Ort und Zeit
Vorlesung: Mo, 12-14 Uhr, HS II, Albertstr. 23b, Mi, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Klausur: Datum wird noch bekanntgegeben
Achtung: Zeit- und Raumänderung!
Lehre
Dozent:in: Patrick Dondl
Assistenz: Luciano Sciaraffia
Sprache: auf Deutsch
Inhalt
Die lineare Funktionalanalysis, um die es in der Vorlesung geht, verwendet Konzepte der linearen Algebra wie Vektorraum, linearer Operator, Dualraum, Skalarprodukt, adjungierte Abbildung, Eigenwert, Spektrum, um Gleichungen in unendlichdimensionalen Funktionenräumen zu lösen, vor allem lineare Differentialgleichungen. Die algebraischen Begriffe müssen dazu durch topologische Konzepte wie Konvergenz, Vollständigkeit, Kompaktheit erweitert werden.
Dieser Ansatz ist zu Beginn des 20. Jahrhunderts u. a. von Hilbert entwickelt worden, er gehört nun zum methodischen Fundament der Analysis, der Numerik, sowie der Mathematischen Physik, insbesondere der Quantenmechanik, und ist auch in anderen mathematischen Gebieten unverzichtbar.
Vorkenntnisse
Lineare Algebra I+II, Analysis I–III
Verwendbarkeit
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Vertiefung (MEd18, MEH21)
Angewandte Mathematik (MSc14)
Reine Mathematik (MSc14)
Wahlmodul (MSc14)
Elective in Data (MScData24)