Differentialgeometrie II – Geometrie der Untermannigfaltigkeiten
Vorlesung: Mo, Mi, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Guofang Wang
Assistenz: Xuwen Zhang
Sprache: auf Deutsch
In der Vorlesung diskutieren wir die Geometrie der Untermannigfaltigkeiten euklidischer Räume. Beispiele für solche Untermannigfaltigkeiten sind Kurven in der Ebene und Flächen im 3-dimensionalen Raum. Im 1. Teil führen wir als Grundlage die äußere Geometrie der Untermannigfaltigkeiten ein, z. B. die zweite Fundamentalform, die mittlere Krümmung, die erste Variation des Flächeninhalts, die Gleichungen von Gauss, Codazzi und Ricci. Im 2. Teil untersuchen wir die minimale Hyperflächen (Minimalflächen), die Hyperflächen mit konstanter mittlerer Krümmung und die geometrischen Ungleichungen, die isoperimetrische Ungleichung und ihre Verallgemeinerungen.
Analysis III und Differentialgeometrie oder "Kurven und Flächen"
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Reine Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)
Proseminar: Eindimensionales Maximumprinzip
Seminar: Mi, 16-18 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 05.02., 16:00, SR 125, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Guofang Wang
Assistenz: Xuwen Zhang
Sprache: auf Deutsch
Das Proseminar behandelt eindimensionale Maximumprinzipien. Das Prinzip basiert auf den notwendigen Bedingungen für Extremstellen. Nimmt eine zweimal dfferenzierbare Funktion \(f:(a, b) \to \mathbb R\) an einem Punkt \(x_0 \in \mathbb R\) ein lokales Maximum an, so erfüllt die erste Ableitung \(f'(x_0)=0\) und die zweite Ableitung \(f''(x_0) \leqslant 0\). Dies impliziert, dass die Funktion \(f\) ihr Maximum am Rand \(\partial(a, b) = \{a, b\}\) des Intervalls annehmen muss, falls man weiß, dass \(f'' > 0\) in ganz \((a, b)\) gilt. Diese Schlussfolgerung nennt man in der Theorie der partiellen Differentialgleichungen das schwache Maximumprinzip. In dem Proseminar verwenden wir es hauptsächlich für gewöhnliche Differentialgleichungen.
Analysis I und II
Proseminar (2HfB21, BSc21, MEH21, MEB21)
Vorlesung: Mo, Mi, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Guofang Wang
Assistenz: Christine Schmidt, Xuwen Zhang
Sprache: auf Deutsch
Eine Vielzahl unterschiedlicher Probleme aus den Naturwissenschaften und der Geometrie führt auf partielle Differentialgleichungen. Mithin kann keine Rede von einer allumfassenden Theorie sein. Dennoch gibt es für lineare Gleichungen ein klares Bild, das sich an drei Prototypen orientiert: der Potentialgleichung \(-\Delta u = f\), der Wärmeleitungsgleichung \(u_t - \Delta u = f\) und der Wellengleichung \(u_{tt} - \Delta u = f\), die wir in der Vorlesung untersuchen werden.
Notwendig: Analysis III \ Nützlich: Funktionentheorie
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Vertiefung (MEd18, MEH21)
Reine Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)
Vorlesung: Mo, 14-16 Uhr, SR 127, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Xuwen Zhang
Sprache: auf Englisch
We will study functions of bounded variation, which are functions whose weak first partial derivatives are Radon measures. This is essentially the weakest definition of a function to be differentiable in the measure-theoretic sense. After discussing the basic properties of them, we move on to the study of sets of finite perimeter, which are Lebesgue measurable sets in the Euclidean space whose indicator functions are BV functions. Sets of finite perimeter are fundamental in the modern Calculus of Variations as they generalize in a natural measure-theoretic way the notion of sets with regular boundaries and possess nice compactness, thus appearing in many Geometric Variational problems. If time permits, we will discuss the (capillary) sessile drop problem as one important application.
Notwendig: Grundkenntnisse in Maßtheorien und Analysis.
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Reine Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)
Seminar: Mi, 16-18 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 17.07., 16:00
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Guofang Wang
Assistenz: Xuwen Zhang
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Minimalflächen sind Flächen im Raum mit „minimalem“ Flächeninhalt und lassen sich mithilfe holomorpher Funktionen beschreiben. Sie treten u.a. bei der Untersuchung von Seifenhäuten und der Konstruktion stabiler Objekte (z.B. in der Architektur) in Erscheinung. Bei der Untersuchung von Minimalflächen kommen elegante Methoden aus verschiedenen mathematischen Gebieten wie der Funktionentheorie, der Variationsrechnung, der Differentialgeometrie und der partiellen Differentialgleichung zur Anwendung.
Notwendig: Analysis III oder Mehrfachintegrale, und Funktionentheorie \ Nützlich: Elementare Differentialgeometrie
Wahlmodul im Optionsbereich (2HfB21)
Mathematisches Seminar (BSc21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Ergänzung (MEd18)
Mathematisches Seminar (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)