Vorlesung: Fr, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig 14-täglich, verschiedene Termine
Klausur 05.09.
Dozent:in: Johannes Brutsche
Assistenz: Dario Kieffer
Sprache: auf Deutsch
Nach dem in der Vorlesung Stochastik I erhaltenen Einblick in die Grundlagen sowie in verschiedene Methoden und Fragestellungen der Stochastik bzw. Wahrscheinlichkeitstheorie wird sich diese Vorlesung hauptsächlich statistischen Themen widmen, insbesondere solchen, die für Studierende des Lehramts an Gymnasien relevant sind. Aber auch für Studierende im B.Sc. Mathematik mit Interesse an Stochastik kann die Vorlesung eine (hoffentlich) nützliche Ergänzung und gute Grundlage für den späteren Besuch der Kursvorlesung „Mathematische Statistik“ sein. Nach der Präzisierung des Begriffes „statistisches Modell“ werden Methoden zur Konstruktion von Schätzern (z.B. Maximum-Likelihood-Prinzip, Momentenmethode) und Gütekriterien für diese (Erwartungstreue, Konsistenz) besprochen. Außerdem werden Konfidenzintervalle und Hypothesentests eingeführt. Als weitere Anwendungen werden lineare Modelle betrachtet und falls die Zeit es erlaubt, weitere statistische Verfahren. Dabei werden auch die für viele Test- und Schätzverfahren nützlichen Eigenschaften von exponentiellen Familien und multivariaten Normalverteilungen vorgestellt.
Lineare Algebra I+II und Analysis I+II
Stochastik (2HfB21, MEH21)
Stochastik II (MEdual24)
Wahlpflichtmodul Mathematik (BSc21)
Vorlesung: Do, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: David Criens
Assistenz: Dario Kieffer
Sprache: auf Englisch
Die Klasse der Markov-Ketten ist eine wichtige Klasse von (zeitdiskreten) stochastischen Prozessen, die häufig verwendet werden, um zum Beispiel die Ausbreitung von Infektionen, Warteschlangensysteme oder Wechsel von Wirtschaftsszenarien zu modellieren. Ihr Hauptmerkmal ist die Markov-Eigenschaft, was in etwa bedeutet, dass die Zukunft von der Vergangenheit nur durch den aktuellen Zustand abhängt. In dieser Vorlesung wird die mathematischen Grundlagen der Theorie der Markov-Ketten vorgestellt. Insbesondere diskutieren wir über Pfadeigenschaften, wie Rekurrenz, Transienz, Zustandsklassifikationen sowie die Konvergenz zu einem Gleichgewicht. Wir untersuchen auch Erweiterungen auf kontinuierliche Zeit. Auf dem Weg dorthin diskutieren wir Anwendungen in der Biologie, in Warteschlangensystemen und im Ressourcenmanagement. Wenn es die Zeit erlaubt, werfen wir auch einen Blick auf Markov-Ketten mit zufälligen Übergangswahrscheinlichkeiten, sogenannten Irrfahrten in zufälliger Umgebung, ein verbreitetes Modell für Zufällige Medien.
Notwendig: Stochastik~I \ Nützlich: Analysis~III, Wahrscheinlichkeitstheorie~I
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Ergänzung (MEd18)
Angewandte Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective in Data (MScData24)
Projektseminar: Nonparametric Maximum Likelihood Estimation
Dozent:in: Angelika Rohde
Assistenz: Dario Kieffer
Seminar: Statistical Learning for Imbalanced Data Sets
Di, 14-16 Uhr, , online
Dozent:in: Angelika Rohde
Assistenz: Dario Kieffer
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Ergänzung (MEd18)
Projektseminar: Statistical Learning
Dozent:in: Angelika Rohde
Assistenz: Dario Kieffer
Di, 10-12 Uhr, SR 127, Ernst-Zermelo-Str. 1
Dozent:in: Angelika Rohde
Assistenz: Dario Kieffer
Wahlpflichtmodul Mathematik (BSc21)