Vorläufiges Vorlesungsverzeichnis – Änderungen und Ergänzungen sind wahrscheinlich.
Klicken Sie auf den Veranstaltungstitel für weitere Informationen!
Algebraische Topologie
Vorlesung: Di, Do, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
noch unter Vorbehalt!
Dozent:in: Maximilian Stegemeyer
Sprache: auf Deutsch
Reine Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Introduction to Theory and Numerics of Partial Differential Equations (Einführung in Theorie und Numerik Partieller Differentialgleichungen)
Vorlesung: Mo, Mi, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Patrick Dondl
Sprache: auf Englisch
Ziel dieses Kurses ist es, eine Einführung in die Theorie der linearen partiellen Differentialgleichungen und deren Finite-Differenzen- sowie Finite-Elemente-Approximationen. Finite-Elemente-Methoden zur Approximation partieller Differentialgleichungen haben einen hohen Reifegrad erreicht und sind ein unverzichtbares Werkzeug in Wissenschaft und Technik. Wir geben eine Einführung in die Konstruktion, Analyse und Implementierung von Finite-Elemente-Methoden für verschiedene Modellprobleme. Wir behandeln elementare Eigenschaften von linearen partiellen Differentialgleichungen zusammen mit deren grundlegender numerischer Approximation, dem funktionalanalytischen Ansatz für den strengen Nachweis der Existenz von Lösungen sowie die Konstruktion und Analyse grundlegender Finite-Elemente-Methoden.
Notwendig: Analysis~I und II, Lineare Algebra~I und II sowie höherdimensionale Integration (z.B. aus Analysis III oder aus Erweiterung der Analysis) \ Nützlich: Numerik für Differentialgleichungem, Funktionalanalysis
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Mathematical Statistics (Mathematische Statistik)
Vorlesung: Di, Do, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Ernst August v. Hammerstein
Sprache: auf Englisch
Die Vorlesung 'Mathematische Statistik' baut auf Grundkenntnissen aus der Vorlesung 'Wahrscheinlichkeitstheorie' auf. Das grundlegende Problem der Statistik ist, anhand einer Stichprobe von Beobachtungen möglichst präzise Aussagen über den datengenerierenden Prozess bzw. die den Daten zugrundeliegenden Verteilungen zu machen. Hierzu werden in der Vorlesung die wichtigsten Methoden aus der statistischen Entscheidungstheorie wie Test- und Schätzverfahren eingeführt.
Stichworte hierzu sind u.a. Bayes-Schätzer und -Tests, Neyman-Pearson-Testtheorie, Maximum-Likelihood-Schätzer, UMVU-Schätzer, exponentielle Familien, lineare Modelle. Weitere Themen sind Ordnungsprinzipien zur Reduktion der Komplexität der Modelle (Suffizienz und Invarianz).
Statistische Methoden und Verfahren kommen nicht nur in den Naturwissenschaften und der Medizin, sondern in nahezu allen Bereichen zum Einsatz, in denen Daten erhoben und analysiert werden, so z. B. auch in den Wirtschaftswissenschaften (Ökonometrie) und Sozialwissenschaften (dort vor allem in der Psychologie). Im Rahmen dieser Vorlesung wird der Schwerpunkt aber weniger auf Anwendungen, sondern – wie der Name schon sagt – mehr auf der mathematisch fundierten Begründung der Verfahren liegen.
Notwendig: Wahrscheinlichkeitstheorie (insbesondere Maßtheorie sowie bedingte Wahrscheinlichkeiten und Erwartungen)
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Modelltheorie (Model Theory)
Vorlesung: Di, Do, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Di&Do 10-12 oder 12-14. HSII, 125 oder 404 wären gut.
Dozent:in: Amador Martín Pizarro
Assistenz: Charlotte Bartnick
Reine Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Probabilistic Machine Learning
Vorlesung: Di, Do, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Giuseppe Genovese
Assistenz: Sebastian Stroppel
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Probability Theory II – Stochastic Processes (Wahrscheinlichkeitstheorie II – Stochastische Prozesse)
Vorlesung: Mo, Mi, 14-16 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Angelika Rohde
Sprache: auf Englisch
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Variationsrechnung
Vorlesung: Mo, Mi, 10-12 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Guofang Wang
Assistenz: Florian Johne
Sprache: auf Deutsch
Reine Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Lesekurse „Wissenschaftliches Arbeiten“
Dozent:in: Alle Professor:innen und Privatdozent:innen des Mathematischen Instituts
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
In einem Lesekurs wird der Stoff einer vierstündigen Vorlesung im betreuten Selbststudium erarbeitet. In seltenen Fällen kann dies im Rahmen einer Veranstaltung stattfinden; üblicherweise werden die Lesekurse aber nicht im Vorlesungsverzeichnis angekündigt. Bei Interesse nehmen Sie vor Vorlesungsbeginn Kontakt mit einer Professorin/einem Professor bzw. einer Privatdozentin/einem Privatdozenten auf; in der Regel wird es sich um die Betreuerin/den Betreuer der Master-Arbeit handeln, da der Lesekurs im Idealfall als Vorbereitung auf die Master-Arbeit dient (im M.Sc. wie im M.Ed.).
Der Inhalt des Lesekurses, die näheren Umstände sowie die Konkretisierung der zu erbringenden Studienleistungen werden zu Beginn der Vorlesungszeit von der Betreuerin/dem Betreuer festgelegt. Die Arbeitsbelastung sollte der einer vierstündigen Vorlesung mit Übungen entsprechen.
Wahlmodul
Mathematik
Vertiefungsmodul
Futures and Options
Vorlesung: Mo, 10-12 Uhr, -, -
Übung: Di, 8-10 Uhr, -, -
noch unbestätigt!
Dozent:in: Eva Lütkebohmert-Holtz
Sprache: auf Englisch
Dieser Kurs bietet eine Einführung in die Finanzmärkte und -produkte. Neben Futures und Standard-Put- und Call-Optionen europäischer und amerikanischer Art werden auch zinssensitive Instrumente wie z.B. Swaps behandelt. Für die Bewertung von Finanzderivaten führen wir zunächst Finanzmodelle in diskreter Zeit ein, wie das Cox-Ross-Rubinstein-Modell vor und erläutern die Grundprinzipien der risikoneutralen Bewertung. Schließlich diskutieren wir das berühmte Black-Scholes-Modell, das ein zeitkontinuierliches Modell für die Optionsbewertung darstellt.
Notwendig: Stochastik~I
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Machine Learning and Mathematical Logic
Vorlesung: Do, 14-16 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
noch unter Vorbehalt!
Dozent:in: Maxwell Levine
Sprache: auf Englisch
Reine Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Markov Chains (Markov-Ketten)
Vorlesung: Mi, 10-12 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: David Criens
Sprache: auf Englisch
Die Klasse der Markov-Ketten ist eine wichtige Klasse von (zeitdiskreten) stochastischen Prozessen, die häufig verwendet werden, um zum Beispiel die Ausbreitung von Infektionen, Warteschlangensysteme oder Wechsel von Wirtschaftsszenarien zu modellieren. Ihr Hauptmerkmal ist die Markov-Eigenschaft, was in etwa bedeutet, dass die Zukunft von der Vergangenheit nur durch den aktuellen Zustand abhängt. In dieser Vorlesung wird die mathematischen Grundlagen der Theorie der Markov-Ketten vorgestellt. Insbesondere diskutieren wir über Pfadeigenschaften, wie Rekurrenz, Transienz, Zustandsklassifikationen sowie die Konvergenz zu einem Gleichgewicht. Wir untersuchen auch Erweiterungen auf kontinuierliche Zeit. Auf dem Weg dorthin diskutieren wir Anwendungen in der Biologie, in Warteschlangensystemen und im Ressourcenmanagement. Wenn es die Zeit erlaubt, werfen wir auch einen Blick auf Markov-Ketten mit zufälligen Übergangswahrscheinlichkeiten, sogenannten Irrfahrten in zufälliger Umgebung, ein verbreitetes Modell für Zufällige Medien.
Notwendig: Stochastik~I \ Nützlich: Analysis~III, Wahrscheinlichkeitstheorie~I
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Mathematical Introduction to Deep Neural Networks
Vorlesung: Mi, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Diyora Salimova
Sprache: auf Englisch
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Numerical Optimal Control
Übung / flipped classroom: Di, 14-16 Uhr, HS II, Albertstr. 23b
Dozent:in: Moritz Diehl
Sprache: auf Englisch
Ziel des Kurses ist es, eine Einführung in numerische Methoden zu geben für die Lösung optimaler Kontrollprobleme in Wissenschaft und Technik. Der Schwerpunkt liegt sowohl auf zeitdiskreter als auch auf zeitkontinuierlicher optimaler Steuerung in kontinuierlichen Zustandsräumen. Der Kurs richtet sich an ein gemischtes Publikum von Studierenden der Mathematik, Ingenieurwissenschaften und Informatik.
Der Kurs deckt die folgenden Themen ab:
Die Vorlesung wird von intensiven wöchentlichen Computerübungen begleitet, die sowohl in in MATLAB und Python (6~ECTS) absolviert werden können. Es wird außerdem ein optionales Projekt (3~ECTS) angeboten. Dieses besteht in der Formulierung und Implementierung eines selbstgewählten optimalen Kontrollproblems und einer numerischen Lösungsmethode, die in einem Projektbericht dokumentiert und abschließend präsentiert wrird.
Notwendig: Analysis~I und II, Lineare Algebra~I und II Nützlich: Numerik I, Gewöhnliche Differentialgleichungen, Numerische Optimierung
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Theory and Numerics for Partial Differential Equations – ??
Vorlesung: Mo, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
evtl. nur zweistündig
Dozent:in: Sören Bartels
Sprache: auf Englisch
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul