Vorläufiges Vorlesungsverzeichnis – Änderungen und Ergänzungen sind wahrscheinlich.
Klicken Sie auf den Veranstaltungstitel für weitere Informationen!
Algebraische Topologie
Vorlesung: Di, Do, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
noch unter Vorbehalt!
Dozent:in: Maximilian Stegemeyer
Sprache: auf Deutsch
Mathematische Vertiefung
Analysis III
Vorlesung: Mo, Mi, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, verschiedene Termine
Klausur: Datum wird noch bekanntgegeben
Dozent:in: Michael Růžička
Sprache: auf Deutsch
Lebesgue-Maß und Maßtheorie, Lebesgue-Integral auf Maßräumen und Satz von Fubini, Fourier-Reihen und Fourier-Transformation, Hilbert-Räume. Differentialformen, ihre Integration und äußere Ableitung. Satz von Stokes und Satz von Gauß.
Notwendig: Analysis I und II, Lineare Algebra I
Mathematische Vertiefung
Funktionentheorie
Vorlesung: Di, Do, 8-10 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Stefan Kebekus
Sprache: auf Deutsch
Die Funktionentheorie beschäftigt sich mit Funktionen \(f : \mathbb C \to \mathbb C\) , die komplexe Zahlen auf komplexe Zahlen abbilden. Viele Konzepte der Analysis~I lassen sich direkt auf diesen Fall übertragen, z.\,B. die Definition der Differenzierbarkeit. Man würde vielleicht erwarten, dass sich dadurch eine zur Analysis~I analoge Theorie entwickelt, doch viel mehr ist wahr: Man erhält eine in vielerlei Hinsicht elegantere und einfachere Theorie. Beispielsweise impliziert die komplexe Differenzierbarkeit auf einer offenen Menge, dass eine Funktion sogar unendlich oft differenzierbar ist, und dies stimmt weiter mit Analytizität überein. Für reelle Funktionen sind alle diese Begriffe unterschiedlich. Doch auch einige neue Ideen sind notwendig: Für reelle Zahlen \(a\), \(b\) integriert man für \[\int_a^b f(x) \mathrm dx\] über die Elemente des Intervalls \([a, b]\) bzw. \([b, a]\). Sind \(a\), \(b\) jedoch komplexe Zahlen, ist nicht mehr so klar, wie man ein solches Integral auf"|fassen soll. Man könnte z.\,B. in den komplexen Zahlen entlang der Strecke, die \(a, b \in \mathbb C\) verbindet, integrieren, oder aber entlang einer anderen Kurve, die von \(a\) nach \(b\) führt. Führt dies zu einem wohldefinierten Integralbegriff oder hängt ein solches Kurvenintegral von der Wahl der Kurve ab?
Notwendig: Analysis I+II, Lineare Algebra I
Mathematische Vertiefung
Introduction to Theory and Numerics of Partial Differential Equations (Einführung in Theorie und Numerik Partieller Differentialgleichungen)
Vorlesung: Mo, Mi, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Patrick Dondl
Sprache: auf Englisch
Ziel dieses Kurses ist es, eine Einführung in die Theorie der linearen partiellen Differentialgleichungen und deren Finite-Differenzen- sowie Finite-Elemente-Approximationen. Finite-Elemente-Methoden zur Approximation partieller Differentialgleichungen haben einen hohen Reifegrad erreicht und sind ein unverzichtbares Werkzeug in Wissenschaft und Technik. Wir geben eine Einführung in die Konstruktion, Analyse und Implementierung von Finite-Elemente-Methoden für verschiedene Modellprobleme. Wir behandeln elementare Eigenschaften von linearen partiellen Differentialgleichungen zusammen mit deren grundlegender numerischer Approximation, dem funktionalanalytischen Ansatz für den strengen Nachweis der Existenz von Lösungen sowie die Konstruktion und Analyse grundlegender Finite-Elemente-Methoden.
Notwendig: Analysis~I und II, Lineare Algebra~I und II sowie höherdimensionale Integration (z.B. aus Analysis III oder aus Erweiterung der Analysis) \ Nützlich: Numerik für Differentialgleichungem, Funktionalanalysis
Mathematische Vertiefung
Variationsrechnung
Vorlesung: Mo, Mi, 10-12 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Guofang Wang
Assistenz: Florian Johne
Sprache: auf Deutsch
Mathematische Vertiefung