Vorläufiges Vorlesungsverzeichnis – Änderungen und Ergänzungen sind noch möglich.
Klicken Sie auf den Veranstaltungstitel für weitere Informationen!
Neu (und teilweise noch nicht in den Kommentaren):
Futures and Options
Dozent:in: Eva Lütkebohmert-Holtz
Sprache: auf Englisch
Dieser Kurs bietet eine Einführung in die Finanzmärkte und -produkte. Neben Futures und Standard-Put- und Call-Optionen europäischer und amerikanischer Art werden auch zinssensitive Instrumente wie z.B. Swaps behandelt.
Für die Bewertung von Finanzderivaten führen wir zunächst Finanzmodelle in diskreter Zeit ein, wie das Cox-Ross-Rubinstein-Modell vor und erläutern die Grundprinzipien der risikoneutralen Bewertung. Schließlich diskutieren wir das berühmte Black-Scholes-Modell, das ein zeitkontinuierliches Modell für die Optionsbewertung darstellt.
Stochastik I
Mathematische Ergänzung
Linear Algebraic Groups
Dozent:in: Abhishek Oswal
Assistenz: Damian Sercombe
Sprache: auf Englisch
Vorlesung: Mo, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Es liegen noch keine Informationen vor.
Es liegen noch keine Informationen vor.
Mathematische Ergänzung
Machine Learning and Mathematical Logic
Dozent:in: Maxwell Levine
Sprache: auf Englisch
Vorlesung: Do, 14-16 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Developments in artificial intelligence have boomed in recent years, holding the potential to reshape not just our daily routines but also society at large. Many bold claims have been made regarding the power and reach of AI. From a mathematical perspective, one is led to ask: What are its limitations? To what extent does our knowledge of reasoning systems in general apply to AI?
This course is intended to provide some applications of mathematical logic to the field of machine learning, a field within artificial intelligence. The goal of the course is to present a breadth of approachable examples.
The course will include a gentle introduction to machine learning in a somewhat abstract setting, including the notions of PAC learning and VC dimension. Connections to set theory and computability theory will be explored through statements in machine learning that are provably undecidable. We will also study some applications of model theory to machine learning.
The literature indicated in the announcement is representative but tentative. A continuously written PDF of course notes will be the main resource for students.
Background in basic mathematical logic is strongly recommended. Students should be familiar with the following notions: ordinals, cardinals, transfinite induction, the axioms of ZFC, the notion of a computable function, computable and computably enumerable sets (a.k.a. recursive and recursively enumerable sets), the notions of languages and theories and structures as understood in model theory, atomic diagrams, elementarity, and types. The concepts will be reviewed briefly in the lectures. Students are not expected to be familiar with the notion of forcing in set theory.
Mathematische Ergänzung
Markov Chains
Dozent:in: David Criens
Sprache: auf Englisch
Vorlesung: Mi, 10-12 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Die Klasse der Markov-Ketten ist eine wichtige Klasse von (zeitdiskreten) stochastischen Prozessen, die häufig verwendet werden, um zum Beispiel die Ausbreitung von Infektionen, Warteschlangensysteme oder Wechsel von Wirtschaftsszenarien zu modellieren. Ihr Hauptmerkmal ist die Markov-Eigenschaft, was in etwa bedeutet, dass die Zukunft von der Vergangenheit nur durch den aktuellen Zustand abhängt. In dieser Vorlesung wird die mathematischen Grundlagen der Theorie der Markov-Ketten vorgestellt. Insbesondere diskutieren wir über Pfadeigenschaften, wie Rekurrenz, Transienz, Zustandsklassifikationen sowie die Konvergenz zu einem Gleichgewicht. Wir untersuchen auch Erweiterungen auf kontinuierliche Zeit. Auf dem Weg dorthin diskutieren wir Anwendungen in der Biologie, in Warteschlangensystemen und im Ressourcenmanagement. Wenn es die Zeit erlaubt, werfen wir auch einen Blick auf Markov-Ketten mit zufälligen Übergangswahrscheinlichkeiten, sogenannten Irrfahrten in zufälliger Umgebung, ein verbreitetes Modell für Zufällige Medien.
Notwendig: Stochastik I \
Nützlich: Analysis III, Wahrscheinlichkeitstheorie I
Mathematische Ergänzung
Mathematical Introduction to Deep Neural Networks
Dozent:in: Diyora Salimova
Assistenz: Ilkhom Mukhammadiev
Sprache: auf Englisch
Vorlesung: Mi, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
The course will provide an introduction to deep learning algorithms with a focus on the mathematical understanding of the objects and methods used. Essential components of deep learning algorithms will be reviewed, including different neural network architectures and optimization algorithms. The course will cover theoretical aspects of deep learning algorithms, including their approximation capabilities, optimization theory, and error analysis.
Analysis I und II, Lineare Algebra I und II
Mathematische Ergänzung
Numerical Optimal Control
Dozent:in: Moritz Diehl
Sprache: auf Englisch
Übung / flipped classroom: Di, 14-16 Uhr, HS II, Albertstr. 23b
Klausur: Datum wird noch bekanntgegeben
Ziel des Kurses ist es, eine Einführung in numerische Methoden zu geben für die Lösung optimaler Kontrollprobleme in Wissenschaft und Technik. Der Schwerpunkt liegt sowohl auf zeitdiskreter als auch auf zeitkontinuierlicher optimaler Steuerung in kontinuierlichen Zustandsräumen. Der Kurs richtet sich an ein gemischtes Publikum von Studierenden der Mathematik, Ingenieurwissenschaften und Informatik.
Der Kurs deckt die folgenden Themen ab:
Die Vorlesung wird von intensiven wöchentlichen Computerübungen begleitet, die sowohl in in MATLAB und Python (6~ECTS) absolviert werden können. Es wird außerdem ein optionales Projekt (3~ECTS) angeboten. Dieses besteht in der Formulierung und Implementierung eines selbstgewählten optimalen Kontrollproblems und einer numerischen Lösungsmethode, die in einem Projektbericht dokumentiert und abschließend präsentiert wrird.
Notwendig: Analysis I und II, Lineare Algebra I und II \
Nützlich: Numerik I, Gewöhnliche Differentialgleichungen, Numerische Optimierung
Mathematische Ergänzung
Theory and Numerics for Partial Differential Equations – Selected Nonlinear Problems
Dozent:in: Sören Bartels
Assistenz: Tatjana Schreiber
Sprache: auf Englisch
Vorlesung: Mo, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
The lecture addresses the development and analysis of numerical methods for the approximation of certain nonlinear partial differential equations. The considered model problems include harmonic maps into spheres and total-variation regularized minimization problems. For each of the problems, a suitable finite element discretization is devised, its convergence is analyzed and iterative solution procedures are developed. The lecture is complemented by theoretical and practical lab tutorials in which the results are deepened and experimentally tested.
'Einführung in Theorie und Numerik partieller Differentialgleichungen' oder 'Einführung in partielle Differentialgleichungen'
Mathematische Ergänzung
Topics in Mathematical Physics
Dozent:in: Chiara Saffirio
Sprache: auf Englisch
Vorlesung: Mo, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Fragen zur Vorlesung können gerne auf Deutsch gestellt werden.
Dieser Kurs bietet eine Einführung in analytische Methoden der Mathematischen Physik mit besonderem Schwerpunkt auf der Quantenmechanik von Vielteilchensystemen. Im Zentrum steht der rigorose Beweis der Stabilität der Materie für Coulomb-Systeme wie Atome und Moleküle. Die zentrale Frage - warum makroskopische Objekte, die aus geladenen Teilchen bestehen, unter elektromagnetischen Kräften nicht kollabieren - blieb in der klassischen Physik ungelöst und entbehrte selbst in der frühen Quantenmechanik einer heuristischen Erklärung. Bemerkenswerterweise war der Beweis der Stabilität der Materie das erste Beispiel dafür, dass die Mathematik eine grundlegende physikalische Frage eindeutig beantworten konnte, und ein früher und bedeutender Erfolg der Quantenmechanik.
Inhalte:
Analysis III und Lineare Algebra. \
Vorkenntnisse in Physik sind nicht erforderlich; alle relevanten physikalischen Konzepte werden im Kurs von Grund auf eingeführt.
Mathematische Ergänzung
Topological Data Analysis
Dozent:in: Mikhail Tëmkin
Sprache: auf Englisch
Informationen folgen noch!
Informationen folgen noch!
Mathematische Ergänzung
Lernen durch Lehren
Organisation: Susanne Knies
Sprache: auf Deutsch
Was macht ein gutes Tutorat aus? Im ersten Workshop wird diese Frage diskutiert und es werden Tipps und Anregungen mitgegeben. Im zweiten Workshop werden die Erfahrungen ausgetauscht.
Mathematische Ergänzung
Schulmathematische Aspekte der Analysis und Linearen Algebra
Dozent:in: Katharina Böcherer-Linder, Markus Junker
Sprache: auf Deutsch
Mo, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
In dieser neu konzipierten Veranstaltungen werden Themen der Vorlesungen zur Analysis und zur Linearen Algebra aufgegriffen (wie zum Beispiel Grenzwerte, Stetigkeit, geometrische Abbildungen) und zum einen herausgearbeitet, wie diese in der Schule vorkommen, und zum anderen, inwieweit der hochschulmathematische Blick für das Verständnis der Schulmathematik hilft.
Es ist geplant, dass die Veranstaltung als interaktives Seminar abläuft, in dem die Teilnehmer:innen Fallbeispiele vorbereiten, die dann gemeinsam diskutiert werden. Der Leistungsnachweis wird (neben der regelmäßigen Anwesenheit) in den Präsentationen und Ausarbeitungen der Fallbeispiele bestehen.
Grundvorlesungen in Analysis und Linearer Algebra
Mathematische Ergänzung
Praktische Übung zu 'Introduction to Theory and Numerics of Partial Differential Equations'
Dozent:in: Patrick Dondl
Sprache: auf Englisch
Die Praktische Übung begleitet die gleichnamige Vorlesung mit Programmieraufgaben zum Vorlesungsstoff.
Siehe bei der Vorlesung – zusätzlich: Programmierkenntnisse.
Mathematische Ergänzung
Praktische Übung zu Numerik
Dozent:in: Patrick Dondl
Assistenz: Jonathan Brugger
Sprache: auf Deutsch
In den begleitenden praktischen Übungen zur Vorlesung Numerik I werden die in der Vorlesung entwickelten und analysierten Algorithmen praktisch umgesetzt und experimentell getestet. Die Implementierung erfolgt in den Programmiersprachen Matlab, C++ und Python. Elementare Programmierkenntnisse werden dabei vorausgesetzt.
Siehe bei der Vorlesung {\em Numerik I} (die gleichzeitig gehört werden oder schon absolviert sein soll). \ Zusätzlich: Elementare Programmiervorkenntnisse zum Beispiel aus dem Kurs \emph{Einführung in die Programmierung für Studierende der Naturwissenschaften}.
Mathematische Ergänzung
Praktische Übung zu 'Theory and Numerics of Partial Differential Equations – Selected Nonlinear Problems'
Dozent:in: Sören Bartels
Assistenz: Tatjana Schreiber
Sprache: auf Englisch
In the practical exercises accompanying the lecture 'Theory and Numerics for Partial Differential Equations – Selected Nonlinear Problems', the algorithms developed and analyzed in the lecture are implemented and tested experimentally. The implementation can be carried out in the programming languages Matlab, C++ or Python. Elementary programming knowledge is assumed.
siehe bei der Vorlesung
Mathematische Ergänzung
Bitte beachten Sie die in den Kommentaren zum Vorlesungsverzeichnis veröffentlichten Anmeldemodalitäten zu den einzelnen Proseminaren: In der Regel erfolgt die Platzvergabe nach Voranmeldung per E-Mail bei der Vorbesprechung am Ende der Vorlesungszeit des Sommersemesters. Anschließend müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft vom 1. August 2025 bis voraussichtlich 8. Oktober 2025.Sollten Sie ein Proseminar belegen wollen, haben aber keine Platz erhalten, melden Sie sich bitte umgehend bei der Studiengangkoordination.
Proseminar: Mathematik im Alltag
Dozent:in: Susanne Knies
Sprache: auf Deutsch
Restplätze des M.Ed-Seminars nach dem Praxissemester können als Proseminarplätze vergeben werden. Nähere Informationen siehe dort!
Mathematische Ergänzung
Bitte beachten Sie die in den Kommentaren zum Vorlesungsverzeichnis veröffentlichten Anmeldemodalitäten zu den einzelnen Seminaren: In der Regel erfolgt die Platzvergabe nach Voranmeldung per E-Mail bei der Vorbesprechung am Ende der Vorlesungszeit des Sommersemesters. Anschließend müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft vom 1. August 2025 bis voraussichtlich 8. Oktober 2025.
Dozent:in: Susanne Knies
Assistenz: Jonah Reuß
Sprache: auf Deutsch
Das Seminar ist vorzugsweise für M.Ed.-Studierende gedacht. Restplätze können als Proseminarplätze vergeben werden.
Vielen technischen Anwendungen liegen mathematische Methoden zu Grunde, ebenso findet sich Mathematik in vielen Alltagsproblemen wieder. In diesem Seminar soll in jedem Vortag ein solches Theam vorgestellt und der mathematische Hintergrund erläutert werden. Zur Vorbereitung des Vortrags gehört auch die eigene Literaturrecherche. Themenvorscläge finden Sie auf \url{https://home.mathematik.uni-freiburg.de/knies/lehre/ws2526/}.
Ausdrücklich sind auch eigene Themenvorschläge willkommen, die z. B. Mathematik mit Ihrem zweiten Studienfach (im MEd) in Verbindung bringen.
Mathematische Ergänzung
Seminar: Computational PDEs – Gradient Flows and Descent Methods
Dozent:in: Sören Bartels
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Mo, 14-16 Uhr, SR 226, Hermann-Herder-Str. 10
Vorbesprechung 15.07., 12:30, Raum 209, Hermann-Herder-Str. 10
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
The seminar will be devoted to the development of reliable and efficient discretizations of time stepping methods for parabolic evolution problems. The considered model problems either result from minimization problems or dynamical systems and are typically constrained or nondifferentiable. Criteria that allow to adjust the step sizes and strategies that lead to an acceleration of the convergence to stationary configurations will be addressed in the seminar. Specific topics and literature will be assigned in the preliminary meeting.
Mathematische Ergänzung
Dozent:in: Wolfgang Soergel
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Di, 14-16 Uhr, SR 127, Ernst-Zermelo-Str. 1
Voranmeldung: Bei Interesse gerne Nachricht an Wolfgang Soergel
Vorbesprechung 17.07., 12:15
Struktur nichtkommutativer Ringe mit Anwendungen auf Darstellungen endlicher Gruppen.
notwendig: Lineare Algebra I und II \
nützlich: Algebra und Zahlentheorie
Mathematische Ergänzung
Seminar: Medical Data Science
Dozent:in: Harald Binder
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Mi, 10:15-11:30 Uhr, HS Medizinische Biometrie, 1. OG, Stefan-Meier-Str. 26
Voranmeldung: per E-Mail an Olga Sieber
Vorbesprechung 23.07., 10:15, HS Medizinische Biometrie, 1. OG, Stefan-Meier-Str. 26
Zur Beantwortung komplexer biomedizinischer Fragestellungen aus großen Datenmengen ist oft ein breites Spektrum an Analysewerkzeugen notwendig, z.B. Deep-Learning- oder allgemeiner Machine-Learning-Techniken, was häufig unter dem Begriff "`Medical Data Science"' zusammengefasst wird. Statistische Ansätze spielen eine wesentliche Rolle als Basis dafür. Eine Auswahl von Ansätzen soll in den Seminarvorträgen vorgestellt werden, die sich an kürzlich erschienenen Originalarbeiten orientieren. Die genaue thematische Ausrichtung wird noch festgelegt.
Gute Kenntnisse in Wahrscheinlichkeitstheorie und Mathematischer Statistik.
Mathematische Ergänzung
Seminar: Minimalflächen
Dozent:in: Guofang Wang
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Mi, 16-18 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 30.07., SR 125, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Minimalflächen sind Flächen im Raum mit „minimalem“ Flächeninhalt und lassen sich mithilfe holomorpher Funktionen beschreiben. Sie treten u.a. bei der Untersuchung von Seifenhäuten und der Konstruktion stabiler Objekte (z.B. in der Architektur) in Erscheinung. Bei der Untersuchung von Minimalflächen kommen elegante Methoden aus verschiedenen mathematischen Gebieten wie der Funktionentheorie, der Variationsrechnung, der Differentialgeometrie und der partiellen Differentialgleichung zur Anwendung.
Mathematische Ergänzung
Seminar: Random Walks
Dozent:in: Angelika Rohde
Assistenz: Johannes Brutsche
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Mo, 16-18 Uhr, SR 127, Ernst-Zermelo-Str. 1
Vorbesprechung 22.07., Raum 232, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Voranmeldung: Wenn Sie sich für das Seminar interessieren, schreiben Sie bitte eine E-Mail an Johannes Brutsche, in der Sie Ihre Voraussetzungen in der Wahrscheinlichkeitsrechnung angeben und, ob Sie vorhaben, Wahrscheinlichkeitstheorie II zu besuchen.
Random walks are stochastic processes (in discrete time) formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. Many results that are part of this seminar also carry over to Brownian motion and related processes in continuous time. In particular, the theory for random walks contains many central and elegant proof ideas which can be extended to various other settings. We start the theory at the very beginning but quickly move on to proving local central limit theorems, study Green's function and recurrence properties, hitting times and the Gambler's ruin estimate. Further topics may include a dyadic coupling with Brownian motion, Dirichlet problems, random walks that are not indexed in \(\mathbb{N}\) but the lattice \(\mathbb{Z}^d\), and intersection probabilities for multidimensional random walks (which are processes \(X:\mathbb{N}\rightarrow\mathbb{R}^d\)). Here, we will see that in dimension \(d=1,2,3\) two paths hit each other with positive probability, while for \(d\geq 4\) they avoid each other almost surely.
Wahrscheinlichkeitsheorie I \
Einige Vorträge benötigen nur Stochastik I. Wenn Sie an dem Seminar interessiert sind und Wahrscheinlichkeitsheorie noch nicht gehört haben, schreiben Sie bitte dem Assistenten, damit wir ein geeigentes Thema auswählen können.
Mathematische Ergänzung