Die Seminarplätze werden in der Regel am Ende der Vorlesungszeit des Wintersemesters vergeben. Im Kommentierten Vorlesungsverzeichnis wird für jedes Seminar beschrieben, ob und wie eine Voranmeldung erfolgen muss und wann die Vorbesprechung stattfindet.Sofern Sie einen Platz in einem Seminar erhalten haben, müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft voraussichtlich vom 1. März bis 14. April 2025.
Seminar: Mo, 12-14 Uhr, online, -
Voranmeldung: per E-Mail an Diyora Salimova
Vorbesprechung 14.04., 15:00, über Zoom (bitte schreiben Sie der Dozentein, falls der Termin nicht passt)
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Diyora Salimova
Assistenz: Ilkhom Mukhammadiev
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
In recent years, deep learning have been successfully employed for a multitude of computational problems including object and face recognition, natural language processing, fraud detection, computational advertisement, and numerical approximations of differential equations. Such simulations indicate that neural networks seem to admit the fundamental power to efficiently approximate high-dimensional functions appearing in these applications.
The seminar will review some classical and recent mathematical results on approximation properties of deep learning. We will focus on mathematical proof techniques to obtain approximation estimates on various classes of data including, in particular, certain types of PDE solutions.
Grundlagen der Funktionalanalysis, der Numerik partieller Differentialgleichungen und der Wahrscheinlichkeitstheorie.
Mathematisches Seminar
Wahlmodul
Seminar: Do, 10-12 Uhr, SR 403, Ernst-Zermelo-Str. 1
Voranmeldung: Per E-Mail an Wolfgang Soergel
Vorbesprechung 28.01., 14:15, SR 127, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Wolfgang Soergel
Assistenz: Damian Sercombe
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Dieses Seminar soll in die Theorie der linearen algebraischen Gruppen einführen. Lineare algebraische Gruppen sind Verallgemeinerungen der aus der linearen Algebra bekannten Matrizengruppen.
Ich stelle mir ein Format vor, in dem ich oder Sercombe vortragen und dazwischen die Seminarteilnehmer eigene Vorträge halten. Das Seminar ist eine sinnvolle Ergänzung zur kommutativen Algebra, auf die auch je länger desto mehr Bezug genommen werden wird.
Algebra und Zahlentheorie (wobei die Details der Galoistheorie und Körpertheorie weniger relevant sind als die allgemeine Theorie der Gruppen und Ringe) und Lineare Algebra.
Mathematisches Seminar
Wahlmodul
Seminar: Di, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 04.02., 12:15, SR 218, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Ernst Kuwert
Assistenz: Florian Johne
Thema des Seminars ist der curve shortening flow. Danach bewegt sich eine geschlossene Kurve \(c\) im \({\mathbb R}^2\) nach dem Gesetz \[\frac{\partial c}{\partial t} = \varkappa \nu.\] Als Hauptergebnis wollen wir zeigen, dass eine eingebettete Kurve \(c\) nach endlicher Zeit auf einen Punkt kontrahiert und dabei asymptotisch rund wird (Satz von Grayson). Dies ist erstaunlich, da eingebettete Kurven in der Ebene sehr kompliziert sein können.
Als Techniken werden wir u.a. das Maximumprinzip, eine Monotonieformel, Krümmungsabschätzungen, Blow-up-Argumente kennenlernen. Der {\em curve shortening flow} ist ein einfacher Prototyp für Evolutionsgleichungen mit zentralen Anwendungen in der Geometrie.
Analysis I–III
Mathematisches Seminar
Wahlmodul
Seminar: Di, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Vorbesprechung 04.02., 10:00, SR 318, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Nadine Große
Assistenz: Maximilian Stegemeyer
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Auf einer Riemannschen Mannigfaltigkeit \((M,g)\) kann durch Paralleltransport entlang einer Kurve eine Isometrie zwischen den Tangentialräumen an verschiedenen Punkten gefunden werden. Beschränkt man sich auf geschlossene Kurven, so erhält man eine Gruppe von linearen Isometrien des Tangentialraums eines Punktes. Diese Gruppe hängt bis auf Isomorphismus nur von der Riemannschen Metrik und der Mannigfaltigkeit – nicht aber vom gewählten Punkt – ab. Man bezeichnet diese Gruppe als die \textit{Holonomie-Gruppe} von \((M,g)\). Die Holonomie-Gruppe enthält wichtige Informationen über die Metrik und über zusätzliche geometrische Strukturen der Mannigfaltigkeit.
Im ersten Teil dieses Seminars wollen wir das Konzept der Holonomiegruppe verstehen. Dafür werden wir Zusammenhänge auf Hauptfaserbündeln benutzen und zunächst noch allgemeiner den Begriff der Holonomiegruppe eines Zusammenhangs auf einem Hauptfaserbündel betrachten.
Mit den erlernten Methoden über Zusammenhänge auf Hauptfaserbündeln lassen sich dann auch \textit{charakteristische Klassen} behandeln. Dies sind Kohomologieklassen in der de-Rham-Kohomologie einer Mannigfaltigkeit, die für ein gegebenes Vektorbündel über der Mannigfaltigkeit konstruiert werden können. Im letzten Teil des Seminars werden wir daher auch diese charakteristischen Klassen, ihre Konstruktion und deren Anwendungen kennen lernen.
Differentialgeometrie I
Mathematisches Seminar
Wahlmodul
Seminar: Di, 16-18 Uhr, SR 403, Ernst-Zermelo-Str. 1
Vorbesprechung 29.01., 13:15, Raum 313, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Heike Mildenberger
Assistenz: Maxwell Levine
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Das Auswahlaxiom gehört zu den akzeptierten unbeweisbaren Grundannahmen. Es sagt, dass jede Menge \(M\) nicht leerer Mengen eine Auswahlfunktion hat, das ist eine Funktion \(f : M \to \bigcup M\) mit der Eigenschaft \(\forall x \in M\), \(f(x) \in x\). Auf der Basis der anderen Axiome ZF von Zermelo und Fraenkel gibt es zahlreiche zum Auswahlaxiom äquivalente Aussagen, zum Beispiel die Wohlordenbarkeit jeder Menge und das Lemma von Zorn. Wir studieren in diesem Seminar Modelle der Axiome ZF, in denen das Auswahlaxiom explizit negiert wird. Am Anfang stehen Modelle zum Beweis des folgenden Satzen von Cohen aus dem Jahre 1963: Wenn ZF konsistent ist, so auch ZF und das Negat von AC. Ein Jahr später zeigte Solovay: Es gibt ZF-Modelle, in denen jede Teilmenge der reellen Zahlen Lebesgue-messbar ist, es also keine Vitali-Menge gibt. Zwanzig Jahre später fand man: Eine stark unerreichbare Kardinalzahl ist zur Konstruktion eines solchen Modells unerlässlich. Zahlreiche Fragen nach Abstufungen und besonderen Formen der Negation des Auswahlaxioms sind offen.
Mengenlehre
Mathematisches Seminar
Wahlmodul
Dozent:in: Harald Binder
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Zur Beantwortung komplexer biomedizinischer Fragestellungen aus großen Datenmengen ist oft ein breites Spektrum an Analysewerkzeugen notwendig, z.B. Deep-Learning- oder allgemeiner Machine-Learning-Techniken, was häufig unter dem Begriff "`Medical Data Science"' zusammengefasst wird. Statistische Ansätze spielen eine wesentliche Rolle als Basis dafür. Eine Auswahl von Ansätzen soll in den Seminarvorträgen vorgestellt werden, die sich an kürzlich erschienenen Originalarbeiten orientieren. Die genaue thematische Ausrichtung wird noch festgelegt.
Gute Kenntnisse in Wahrscheinlichkeitstheorie und Mathematischer Statistik.
Mathematisches Seminar
Wahlmodul
Seminar: Numerik partieller Differentialgleichungen
Seminar: Mo, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Vorbesprechung 04.02., 12:00, Raum 209, Hermann-Herder-Str. 10, Bei Verhinderung bei der Vorbesprechung Anmeldung per E-Mail an Sören Bartels.
Dozent:in: Sören Bartels
Assistenz: Vera Jackisch, Tatjana Schreiber
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Im Seminar sollen weiterführende Themen der Theorie und Numerik partieller Differentialgleichungen behandelt werden. Dazu gehören die iterative Lösung der entstehenden linearen Gleichungssysteme mit Mehrgitter- und Gebietszerlegungsmethoden, die adaptive Verfeinerung von Finite-Elemente-Gittern, die Herleitung einer Approximationstheorie mit expliziten Konstanten sowie die Lösung nichtlinearer Probleme.
Einführung in Theorie und Numerik partieller Differentialgleichungen
Mathematisches Seminar
Wahlmodul
Seminar über p-adische Geometrie
Seminar: Mo, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Vorbesprechung 13.02., 14:30, SR 404, Ernst-Zermelo-Str. 1, Please email Abhisehk Oswal, and Ben Snodgrass if you are interested in the seminar but cannot make it to the preliminary meeting.
Dozent:in: Abhishek Oswal
Assistenz: Ben Snodgrass
Sprache: auf Englisch
It has become clear over the last several decades that \(p\)-adic techniques play an indispensable role in arithmetic geometry. At an elementary level, \(p\)-adic numbers provide a compact and convenient language to talk about congruences between integers. Concretely, just as the field of real numbers \(\mathbb R\) arise as the completion of the field \(\mathbb Q\) of rational numbers with respect to the usual notion of distance on \(\mathbb Q\), the field \(\mathbb Q_p\) of \(p\)-adic numbers arise as the completion of \(\mathbb Q\) with respect to an equally natural \(p\)-adic metric. Roughly, in the \(p\)-adic metric, an integer \(n\) is closer to \(0\), the larger the power of the prime number \(p\) that divides it. A general philosophy in number theory is then to treat all these completions \(\mathbb R\), \(\mathbb Q_p\) of the field \(\mathbb Q\) on an equal footing. As we shall see in this course, familiar concepts from real analysis (i.e. notions like analytic functions, derivatives, measures, integrals, Fourier analysis, real and complex manifolds, Lie groups...), have completely parallel notions over the \(p\)-adic numbers.
While the Euclidean topology of \(\mathbb R^n\) is rather well-behaved (so one may talk meaningfully about paths, fundamental groups, analytic continuation, ...), the \(p\)-adic field \(\mathbb Q_p\) on the other hand is totally disconnected. This makes the task of developing a well-behaved notion of global \(p\)-adic analytic manifolds/spaces rather difficult. In the 1970s, John Tate’s introduction of the concept of rigid analytic spaces, solved these problemsand paved the way for several key future developments in \(p\)-adic geometry.
The broad goal of this course will be to introduce ourselves to this world of \(p\)-adic analysis and rigid analytic geometry (due to Tate). Along the way, we shall see a couple of surprising applications of this circle of ideas to geometry and arithmetic. Specifically, we plan to learn Dwork’s proof of the fact that the zeta function of an algebraic variety over a finite field is a rational function.
Field theory, Galois theory and Commutative algebra.
Some willingness to accept unfamiliar concepts as black boxes. Prior experience with algebraic number theory, or algebraic geometry will be beneficial but not necessary.
Mathematisches Seminar
Wahlmodul
Seminar: Die Wiener-Chaos-Zerlegung und (nicht-)zentrale Grenzwertsätze
Dozent:in: Angelika Rohde
Assistenz: Gabriele Bellerino
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Wohingegen lineare Transformationen von Gaußprozessen ihre gaußsche Eigenschaft bewahren, gilt dies für nichtlineare Funktionale, beispielsweise additive Funktionale der Form \[\int_0^T f(X_s) ds\qquad \text{ oder }\qquad \sum_{k=1}^n f(X_{k/n}),\] im Allgemeinen nicht. Die Wiener-Chaos-Zerlegung bietet einen Rahmen zur Analyse nichtlinearer Funktionale von Gaußprozessen. Es handelt sich hierbei um eine orthogonale Zerlegung des Raumes \[L^2(\mathbb{P}) = \bigoplus_{k=1}^\infty \mathcal{H}_k\] der bezüglich \(\mathbb{P}\) quadratintegrierbaren Zufallsvariablen, wobei \(\mathbb{P}\) ein gaußsches Wahrscheinlichkeitsmaß ist. Dieses Konzept verallgemeinert dabei die Eigenschaften orthogonaler Polynome bezüglich eines Wahrscheinlichkeitsmaßes auf der reellen Achse auf ein (potentiell) unendlichdimensionales Szenario. Es stellt sich heraus, dass Elemente eines Wiener-Chaos \(\mathcal{H}_k\) als mehrfache Wiener-Itô-Integrale dargestellt werden können, welche wiederum gut verstandene Objekte sind.
In diesem Seminar werden wir die grundlegenden Eigenschaften des Wiener-Chaos untersuchen, beginnend mit der Hermite-Polynombasis. Anschließend wenden wir uns fortgeschrittenen Themen wie Anwendungen im Malliavin-Kalkül zu, einem unendlichdimensionalen Differential-Kalkül auf gaußschen Wahrscheinlichkeitsräumen (stochastische Variationsrechnung). Des Weiteren werden zentrale und nichtzentrale Grenzwertsätze für nichtlineare Funktionale von gaußschen und nicht-gaußschen Prozessen sowie Invarianzprinzipien behandelt.
Notwendige Vorkenntnisse bestehen nur aus Kenntnissen der Wahrscheinlichkeitstheorie I.
Für einige Vorträge sind Vorkenntnisse der Wahrscheinlichkeitstheorie II (Stochastische Prozesse) nützlich. Ihre individuellen Vorkenntnisse können bei der Vergabe der Themen jedoch selbstverständlich berücksichtigt werden.
Mathematisches Seminar
Wahlmodul