Ausführliche Informationen zu den Veranstaltungen finden sich im Kommentierten Vorlesungsverzeichnis und in den Modulhandbüchern (siehe bei den einzelnen Studiengängen).
Vorlesung: Di, Do, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, verschiedene Termine
Klausur 25.02., 13:00-16:00, HS Rundbau, Albertstr. 21
Nachklausur 09.04., 09:00-12:00
Dozent:in: Wolfgang Soergel
Assistenz: Damian Sercombe
Sprache: auf Deutsch
Diese Vorlesung setzt die Lineare Algebra fort. Behandelt werden Gruppen, Ringe, Körper sowie Anwendungen in der Zahlentheorie und Geometrie. Höhepunkte der Vorlesung sind die Klassifikation endlicher Körper, die Unmöglichkeit der Winkeldreiteilung mit Zirkel und Lineal, die Nicht-Existenz von Lösungsformeln für allgemeine Gleichungen fünften Grades und das quadratische Reziprozitätsgesetz.
Notwendig: Lineare Algebra~I und II
Elective
Algebraische Zahlentheorie
Vorlesung: Di, Do, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Abhishek Oswal
Assistenz: Andreas Demleitner
Sprache: auf Englisch
Kurze Beschreibung der Themen: Zahlkörper, Primzahlzerlegung in Dedekind-Ringen, Idealklassengruppen, Einheitengruppen, Dirichlet'scher Einheitensatz, lokale Körper, Bewertungen, Zerlegungs- und Trägheitsgruppen, Einführung in die Klassenkörpertheorie.
Notwendig: Algebra und Zahlentheorie
Elective
Vorlesung: Mo, Mi, 14-16 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Sebastian Goette
Assistenz: Mikhail Tëmkin
Sprache: auf Deutsch
Die Differentialgeometrie, speziell die Riemannsche Geometrie, besch"aftigt sich mit den geometrischen Eigenschaften gekr"ummter R"aume. Solche R"aume treten auch in anderen Bereichen der Mathematik und Physik auf, beispielsweise in der geometrischen Analysis, der theoretischen Mechanik und der allgemeinen Relativit"atstheorie.
Im ersten Teil der Vorlesung lernen wir Grundbegriffe der Differentialgeometrie (z.\ B. differenzierbare Mannigfaltigkeiten, Vektorb"undel, Zusammenh"ange und ihre Kr"ummung) und der Riemannschen Geometrie (Riemannscher Kr"ummungstensor, Geod"atische, Jacobi-Felder etc.) kennen.
Im zweiten Teil betrachten wir das Zusammenspiel zwischen lokalen Eigenschaften Riemannscher Mannigfaltigkeiten wie der Kr"ummung und globalen topologischen und geometrischen Eigenschaften wie Kompaktheit, Fundamentalgruppe, Durchmesser, Volumenwachstum und Gestalt geod"atischer Dreiecke.
Notwendig: Analysis~I–III, Lineare Algebra~I und II \ Nützlich: Kurven und Flächen, Topologie
Elective
Vorlesung: Mo, Mi, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Guofang Wang
Assistenz: Christine Schmidt, Xuwen Zhang
Sprache: auf Deutsch
Eine Vielzahl unterschiedlicher Probleme aus den Naturwissenschaften und der Geometrie führt auf partielle Differentialgleichungen. Mithin kann keine Rede von einer allumfassenden Theorie sein. Dennoch gibt es für lineare Gleichungen ein klares Bild, das sich an drei Prototypen orientiert: der Potentialgleichung \(-\Delta u = f\), der Wärmeleitungsgleichung \(u_t - \Delta u = f\) und der Wellengleichung \(u_{tt} - \Delta u = f\), die wir in der Vorlesung untersuchen werden.
Notwendig: Analysis III \ Nützlich: Funktionentheorie
Elective
Vorlesung: Di, Mi, 16-18 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Klausur 24.02., 14:00-16:00, HS II, Albertstr. 23b
Dozent:in: David Criens
Assistenz: Eric Trébuchon
Sprache: auf Deutsch
Die Funktionentheorie beschäftigt sich mit Funktionen \(f : \mathbb C \to \mathbb C\) , die komplexe Zahlen auf komplexe Zahlen abbilden. Viele Konzepte der Analysis~I lassen sich direkt auf diesen Fall übertragen, z.\,B. die Definition der Differenzierbarkeit. Man würde vielleicht erwarten, dass sich dadurch eine zur Analysis~I analoge Theorie entwickelt, doch viel mehr ist wahr: Man erhält eine in vielerlei Hinsicht elegantere und einfachere Theorie. Beispielsweise impliziert die komplexe Differenzierbarkeit auf einer offenen Menge, dass eine Funktion sogar unendlich oft differenzierbar ist, und dies stimmt weiter mit Analytizität überein. Für reelle Funktionen sind alle diese Begriffe unterschiedlich. Doch auch einige neue Ideen sind notwendig: Für reelle Zahlen \(a\), \(b\) integriert man für \[\int_a^b f(x) \mathrm dx\] über die Elemente des Intervalls \([a, b]\) bzw. \([b, a]\). Sind \(a\), \(b\) jedoch komplexe Zahlen, ist nicht mehr so klar, wie man ein solches Integral auf"|fassen soll. Man könnte z.\,B. in den komplexen Zahlen entlang der Strecke, die \(a, b \in \mathbb C\) verbindet, integrieren, oder aber entlang einer anderen Kurve, die von \(a\) nach \(b\) führt. Führt dies zu einem wohldefinierten Integralbegriff oder hängt ein solches Kurvenintegral von der Wahl der Kurve ab?
Notwendig: Analysis I+II, Lineare Algebra I
Elective
Mengenlehre: Unabhängigkeitsbeweise
Vorlesung: Di, Do, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Maxwell Levine
Assistenz: Hannes Jakob
Sprache: auf Englisch
How does one prove that something cannot be proved? More precisely, how does one prove that a particular statement does not follow from a particular collection of axioms?
These questions are often asked with respect to the axioms most commonly used by mathematicians: the axioms of Zermelo-Fraenkel set theory, or ZFC for short. In this course, we will develop the conceptual tools needed to understand independence proofs with respect to ZFC. On the way we will develop the theory of ordinal and cardinal numbers, the basics of inner model theory, and the method of forcing. In particular, we will show that Cantor's continuum hypothesis, the statement that \(2^{\aleph_0}=\aleph_1\), is independent of ZFC.
Notwendig: Mathematische Logik
Elective
Vorlesung: Di, Do, 10-12 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Annette Huber-Klawitter, Amador Martín Pizarro
Assistenz: Christoph Brackenhofer
Sprache: auf Deutsch
In der semi-algebraischen Geometrie geht es um Eigenschaften von Teilmengen von \(**R**^n\), die durch Ungleichungen der Form [ f(x1,\dots,xn)\geq 0] für Polynome \(f\in**R**[X_1,\dots,X_n]\) definiert werden.
Die Theorie hat sehr unterschiedliche Gesichter. Einerseits kann sie als eine Version von algebraischer Geometrie über \(\mathbf{R}\) (oder noch allgemeiner über sogenannten reell abgeschlossenen Körpern) gesehen werden. Andererseits sind die Eigenschaften dieser Körper ein zentrales Hilfsmittel für den modelltheoretischen Beweis des Satzes von Tarski-Seidenberg der Quantorenelimination in reell abgeschlossenen Körpern. Geometrisch wird dieser als Projektionssatz interpretiert.
Aus diesem Satz folgt leicht ein Beweis des Hilbert’schen 17. Problems, welches 1926 von Artin bewiesen wurde.
\textit{Ist jedes reelle Polynom \(P \in \mathbf{R}[x_1 ,\dots , x_n ]\), welches an jedem n-Tupel aus \(\mathbf{R}^n\) einen nicht-negativen Wert annnimmt, eine Summe von Quadraten rationaler Funktionen (d.h. Quotienten von Polynomen)?}
In der Vorlesung wollen wir beide Aspekte kennenlernen. Nötige Hilfsmittel aus der kommutativen Algebra oder Modelltheorie werden entsprechend den Vorkenntnissen der Hörer:innen besprochen.
Notwendig: Algebra und Zahlentheorie \ Nützlich: Kommutative Algebra und Einführung in die algebraische Geometrie, Modelltheorie
Elective
Vorlesung: Mo, 14-16 Uhr, SR 127, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Xuwen Zhang
Sprache: auf Englisch
We will study functions of bounded variation, which are functions whose weak first partial derivatives are Radon measures. This is essentially the weakest definition of a function to be differentiable in the measure-theoretic sense. After discussing the basic properties of them, we move on to the study of sets of finite perimeter, which are Lebesgue measurable sets in the Euclidean space whose indicator functions are BV functions. Sets of finite perimeter are fundamental in the modern Calculus of Variations as they generalize in a natural measure-theoretic way the notion of sets with regular boundaries and possess nice compactness, thus appearing in many Geometric Variational problems. If time permits, we will discuss the (capillary) sessile drop problem as one important application.
Notwendig: Grundkenntnisse in Maßtheorien und Analysis.
Elective
Vorlesung: Do, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: Di, 8-10 Uhr, SR 127, Ernst-Zermelo-Str. 1
Dozent:in: Maximilian Stegemeyer
Sprache: auf Englisch
In der Geometrie und Topologie spielen Lie-Gruppen und Wirkungen von Lie-Gruppen eine zentrale Rolle. Mit ihnen lassen sich kontinuierliche Symmetrien beschreiben, eins der wichtigsten Konzepte der Mathematik und der Physik. Das Ausnutzen von Symmetrien, z.B. bei der Beschreibung homogener Räume erleichtert bei vielen konkreten Problemen die Lösung und gibt oft einen tieferen Einblick in die untersuchten Strukturen. Zudem ist die Geometrie und Topologie von Lie-Gruppen und homogenen Räumen selbst von großem Interesse.
In dieser Vorlesung werden wir zunächst die grundlegende Theorie von Lie-Gruppen und Lie-Algebren einführen, insbesondere mit Einblicken in die Strukturtheorie von Lie-Algebren. Im zweiten Teil werden wir dann homogene Räume betrachten mit einem besonderen Fokus auf Riemannsche symmetrische Räume. Letztere sind eine wichtige Beispielklasse Riemannscher Mannigfaltigkeiten. Ein besonderer Fokus wird neben den Lie-theoretischen Aspekten immer auch auf den homogenen Riemannschen Metriken der jeweiligen Räume liegen.
Notwendig: Differentialgeometrie~I
Elective
Organisation: Susanne Knies
Sprache: auf Deutsch
Was macht ein gutes Tutorat aus? Im ersten Workshop wird diese Frage diskutiert und es werden Tipps und Anregungen mitgegeben. Im zweiten Workshop werden die Erfahrungen ausgetauscht.
Elective
Praktische Übung zu Einführung in Theorie und Numerik Partieller Differentialgleichungen
Dozent:in: Sören Bartels
Assistenz: Vera Jackisch
Sprache: auf Englisch
Die Praktische Übung begleitet die gleichnamige Vorlesung mit Programmieraufgaben zum Vorlesungsstoff.
Siehe bei der Vorlesung – zusätzlich: Programmierkenntnisse.
Elective
Bitte beachten Sie die in den Kommentaren zum Vorlesungsverzeichnis veröffentlichten Anmeldemodalitäten zu den einzelnen Seminaren: In der Regel erfolgt die Platzvergabe nach Voranmeldung per E-Mail bei der Vorbesprechung am Ende der Vorlesungszeit des Sommersemesters. Anschließend müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft vom 1. August 2024 bis voraussichtlich 9. Oktober 2024.
Seminar: Mi, 16-18 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 17.07., 16:00
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Guofang Wang
Assistenz: Xuwen Zhang
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Minimalflächen sind Flächen im Raum mit „minimalem“ Flächeninhalt und lassen sich mithilfe holomorpher Funktionen beschreiben. Sie treten u.a. bei der Untersuchung von Seifenhäuten und der Konstruktion stabiler Objekte (z.B. in der Architektur) in Erscheinung. Bei der Untersuchung von Minimalflächen kommen elegante Methoden aus verschiedenen mathematischen Gebieten wie der Funktionentheorie, der Variationsrechnung, der Differentialgeometrie und der partiellen Differentialgleichung zur Anwendung.
Notwendig: Analysis III oder Mehrfachintegrale, und Funktionentheorie \ Nützlich: Elementare Differentialgeometrie
Elective
Seminar: Di, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 16.07., SR 125, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Sebastian Goette
Assistenz: Mikhail Tëmkin
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Wir besprechen fortgeschrittene Themen der algebraischen Topologie. Je nach Interesse der Teilnehmer könnten wir eines der folgenden Themen bearbeiten - wenn Sie andere Themenvroschläge haben, wenden Sie sich bitte an den Dozenten.
Algebraische Topologie~I und II
Elective
Seminar: Fr, 8-10 Uhr, SR 404, Ernst-Zermelo-Str. 1
Voranmeldung: per E-Mail an Ludmilla Frei oder persönlich in Raum 421
Vorbesprechung 15.07., 11:00, SR 318, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Annette Huber-Klawitter
Assistenz: Xier Ren
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
In this seminar, we are going to study finite dimensional (unital, possibly non-commutative) algebras over a (commutative) field \(k\). Prototypes are the rings of square matrices over \(k\), finite field extensions, or the algebra \(k^n\) with diagonal multiplication.
We will concentrate on path algebras of finite quivers (German: Köcher). Modules over them are equivalently described as representations of the quiver. Many algebraic properties can be directly understood from properties of the quiver.
Notwendig: Lineare Algebra \ Nützlich: Algebra und Zahlentheorie, kommutative Algebra
Elective