Ausführliche Informationen zu den Veranstaltungen finden sich im Kommentierten Vorlesungsverzeichnis und in den Modulhandbüchern (siehe bei den einzelnen Studiengängen).
Vorlesung: Di, Do, 10-12 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Sören Bartels
Assistenz: Vera Jackisch
Sprache: auf Englisch
Ziel dieses Kurses ist es, eine Einführung in die Theorie der linearen partiellen Differentialgleichungen und deren Finite-Differenzen- sowie Finite-Elemente-Approximationen. Finite-Elemente-Methoden zur Approximation partieller Differentialgleichungen haben einen hohen Reifegrad erreicht und sind ein unverzichtbares Werkzeug in Wissenschaft und Technik. Wir geben eine Einführung in die Konstruktion, Analyse und Implementierung von Finite-Elemente-Methoden für verschiedene Modellprobleme. Wir behandeln elementare Eigenschaften von linearen partiellen Differentialgleichungen zusammen mit deren grundlegender numerischer Approximation, dem funktionalanalytischen Ansatz für den strengen Nachweis der Existenz von Lösungen sowie die Konstruktion und Analyse grundlegender Finite-Elemente-Methoden.
Notwendig: Analysis~I und II, Lineare Algebra~I und II sowie höherdimensionale Integration (z.B. aus Analysis III oder aus Erweiterung der Analysis) \ Nützlich: Numerik für Differentialgleichungem, Funktionalanalysis
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Vorlesung: Mo, Mi, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
Dozent:in: Ernst August v. Hammerstein
Assistenz: Sebastian Stroppel
Sprache: auf Englisch
Die Vorlesung "Mathematische Statistik"' baut auf Grundkenntnissen aus der Vorlesung "
Wahrscheinlichkeitstheorie"' auf.
Das grundlegende Problem der Statistik ist, anhand einer Stichprobe von Beobachtungen möglichst präzise Aussagen über den datengenerierenden
Prozess bzw. die den Daten zugrundeliegenden Verteilungen zu machen. Hierzu werden in der Vorlesung die wichtigsten Methoden aus der statistischen Entscheidungstheorie wie Test- und Schätzverfahren eingeführt.
Stichworte hierzu sind u.a. Bayes-Schätzer und -Tests, Neyman-Pearson-Testtheorie, Maximum-Likelihood-Schätzer, UMVU-Schätzer, exponentielle Familien, lineare Modelle. Weitere Themen sind Ordnungsprinzipien zur Reduktion der Komplexität der Modelle (Suffizienz und Invarianz).
Statistische Methoden und Verfahren kommen nicht nur in den Naturwissenschaften und der Medizin, sondern in nahezu allen Bereichen zum Einsatz, in denen Daten erhoben und analysiert werden, so z. B. auch in den Wirtschaftswissenschaften (Ökonometrie) und Sozialwissenschaften (dort vor allem in der Psychologie). Im Rahmen dieser Vorlesung wird der Schwerpunkt aber weniger auf Anwendungen, sondern – wie der Name schon sagt – mehr auf der mathematisch fundierten Begründung der Verfahren liegen.
Notwendig: Wahrscheinlichkeitstheorie (insbesondere Maßtheorie sowie bedingte Wahrscheinlichkeiten und Erwartungen)
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Theorie und Numerik für Partieller Differentialgleichungen – Nichtlineare Probleme
Dozent:in: Sören Bartels, Patrick Dondl
Sprache: auf Englisch
Die Vorlesung behandelt die Entwicklung und Analyse von numerischen Methoden für die Approximation bestimmter nichtlinearer partieller Differentialgleichungen. Zu den betrachteten Modellproblemen gehören harmonische Abbildungen in Sphären, total-variable regulierte Minimierungsprobleme und nichtlineare Krümmungsmodelle. Für jedes der Probleme wird eine geeignete Finite-Elemente-Diskretisierung entwickelt, ihre Konvergenz wird analysiert und iterative Lösungsverfahren werden entwickelt. Die Vorlesung wird durch theoretische und praktische Übungen ergänzt, in denen die Ergebnisse vertieft und experimentell überprüft werden.
Notwendig: Einführung in Theorie und Numerik partieller Differetialgleichungen oder Einführung in partielle Differentialgleichungen
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Fragestunde / flipped classroom: Mo, 10-12 Uhr, HS II, Albertstr. 23b
Vorlesung (4-stündig): asynchrone Videos
Dozent:in: Peter Pfaffelhuber
Assistenz: Samuel Adeosun
Sprache: auf Englisch
Ein stochastischer Prozess \((X_t)_{t\in I}\) ist nichts weiter als eine Familie von Zufallsvariablen, wobei etwa \(I = [0,\infty)\) eine kontinuierliche Zeitmenge ist. Einfache Beispiele sind Irrfahrten, Markov-Ketten, die Brown’sche Bewegung oder davon abgeleitete Prozesse. Letztere spielen vor allem in der Modellierung von finanzmathematischen oder naturwissenschaftlichen Fragestellungen eine große Rolle. Wir werden zunächst Martingale behandeln, die in allgemeiner Form faire Spiele beschreiben. Nach der Konstruktion des Poisson-Prozesses und der Brown’sche Bewegung konstruieren, werden wir uns auf Eigenschaften der Brown'schen Bewegung konzentriieren. Infinitesimale Charakteristiken eines Markov-Prozesses werden durch Generatoren beschrieben, was eine Verbindung zur Theorie von partiellen Differentialgleichungen ermöglicht. Abschließend kommt mit dem Ergodensatz fur stationäre stochastische Prozesse eine Verallgemeinerung des Gesetzes der großen Zahlen zur Sprache. Weiter werden Einblicke in ein paar Anwendungsgebiete, etwa Biomathematik oder zufällige Graphen gegeben.
Notwendig: Wahrscheinlichkeitstheorie~I
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Vorlesung: Mo, Mi, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Thorsten Schmidt
Assistenz: Moritz Ritter
Sprache: auf Englisch
Diese Vorlesung bildet den Höhepunkt unserer Reihe zur Wahrscheinlichkeitstheorie und erreicht das ultimative Ziel dieser Reihe: Die Kombination von stochastischer Analysis und Finanzmathematik, ein Gebiet, das seit den 1990er Jahren eine erstaunliche Fülle von faszinierenden Ergebnissen hervorgebracht hat. Der Kern ist sicherlich die Anwendung der Semi-Martingale-Theorie auf die Finanzmärkte, die in dem fundamentalen Theorem der Preisbildung von Vermögenswerten kummulieren. Dieses Ergebnis wird überall auf den Finanzmärkten verwendet. Danach befassen wir uns mit modernen Formen der stochastischen Analysis, die neuronale SDEs, Signaturmethoden, Unsicherheits- und Terminstrukturmodelle. Die Vorlesung schließt mit einer Untersuchung der neuesten Anwendungen von maschinellem Lernen auf den Finanzmärkten und dem wechselseitigen Einfluss der stochastischen Analyse auf maschinelles Lernen ab.
Notwendig: Wahrscheinlichkeitstheorie II (Stochastische Prozesse)
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Vorlesung: Mo, 10-12 Uhr, HS 3042, KG III
Übung: Di, 8-10 Uhr, HS 1015, KG I
Nachklausur 14.08., 15:00-18:00
Dozent:in: Eva Lütkebohmert-Holtz
Assistenz: Hongyi Shen
Sprache: auf Englisch
Dieser Kurs bietet eine Einführung in die Finanzmärkte und -produkte. Neben Futures und Standard-Put- und Call-Optionen europäischer und amerikanischer Art werden auch zinssensitive Instrumente wie z.B. Swaps behandelt. Für die Bewertung von Finanzderivaten führen wir zunächst Finanzmodelle in diskreter Zeit ein, wie das Cox-Ross-Rubinstein-Modell vor und erläutern die Grundprinzipien der risikoneutralen Bewertung. Schließlich diskutieren wir das berühmte Black-Scholes-Modell, das ein zeitkontinuierliches Modell für die Optionsbewertung darstellt.
Notwendig: Stochastik~I
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Vorlesung: Do, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: David Criens
Assistenz: Dario Kieffer
Sprache: auf Englisch
Die Klasse der Markov-Ketten ist eine wichtige Klasse von (zeitdiskreten) stochastischen Prozessen, die häufig verwendet werden, um zum Beispiel die Ausbreitung von Infektionen, Warteschlangensysteme oder Wechsel von Wirtschaftsszenarien zu modellieren. Ihr Hauptmerkmal ist die Markov-Eigenschaft, was in etwa bedeutet, dass die Zukunft von der Vergangenheit nur durch den aktuellen Zustand abhängt. In dieser Vorlesung wird die mathematischen Grundlagen der Theorie der Markov-Ketten vorgestellt. Insbesondere diskutieren wir über Pfadeigenschaften, wie Rekurrenz, Transienz, Zustandsklassifikationen sowie die Konvergenz zu einem Gleichgewicht. Wir untersuchen auch Erweiterungen auf kontinuierliche Zeit. Auf dem Weg dorthin diskutieren wir Anwendungen in der Biologie, in Warteschlangensystemen und im Ressourcenmanagement. Wenn es die Zeit erlaubt, werfen wir auch einen Blick auf Markov-Ketten mit zufälligen Übergangswahrscheinlichkeiten, sogenannten Irrfahrten in zufälliger Umgebung, ein verbreitetes Modell für Zufällige Medien.
Notwendig: Stochastik~I \ Nützlich: Analysis~III, Wahrscheinlichkeitstheorie~I
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Vorlesung: Di, Fr, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Praktische Übung: 2-stündig, Termin wird noch festgelegt
Mündliche Prüfung 06.12.
Die Veranstaltung findet nur in der ersten Semesterhälfte, bis Ende November statt!
Dozent:in: Diyora Salimova
Assistenz: Ilkhom Mukhammadiev
Sprache: auf Englisch
Ziel dieses Kurses ist es, die Studierenden in die Lage zu versetzen, Simulationen und deren mathematische Analyse für stochastische Modelle aus Anwendungen wie der Finanzmathematik und der Physik durchzuführen. Zu diesem Zweck vermittelt der Kurs ein solides Wissen über stochastische Differentialgleichungen (SDEs) und deren Lösungen. Darüber hinaus werden verschiedene numerische Methoden für SDEs, ihre zugrunde liegenden Ideen, Konvergenzeigenschaften und Implementierungsprobleme untersucht.
Notwendig: Stochastik, Maßtheorie, Numerik und MATLAB-Programmierung.
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Übung / flipped classroom: Di, 14-16 Uhr, HS II, Albertstr. 23b
Dozent:in: Moritz Diehl
Assistenz: Florian Messerer
Sprache: auf Englisch
Ziel des Kurses ist es, eine Einführung in numerische Methoden zu geben für die Lösung optimaler Kontrollprobleme in Wissenschaft und Technik. Der Schwerpunkt liegt sowohl auf zeitdiskreter als auch auf zeitkontinuierlicher optimaler Steuerung in kontinuierlichen Zustandsräumen. Der Kurs richtet sich an ein gemischtes Publikum von Studierenden der Mathematik, Ingenieurwissenschaften und Informatik.
Der Kurs deckt die folgenden Themen ab:
Die Vorlesung wird von intensiven wöchentlichen Computerübungen begleitet, die sowohl in in MATLAB und Python (6~ECTS) absolviert werden können. Es wird außerdem ein optionales Projekt (3~ECTS) angeboten. Dieses besteht in der Formulierung und Implementierung eines selbstgewählten optimalen Kontrollproblems und einer numerischen Lösungsmethode, die in einem Projektbericht dokumentiert und abschließend präsentiert wrird.
Notwendig: Analysis~I und II, Lineare Algebra~I und II Nützlich: Numerik I, Gewöhnliche Differentialgleichungen, Numerische Optimierung
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul