Vorläufiges Vorlesungsverzeichnis – Änderungen und Ergänzungen sind noch möglich.
Klicken Sie auf den Veranstaltungstitel für weitere Informationen!
Neu (und teilweise noch nicht in den Kommentaren):
Dozent:in: Wolfgang Soergel
Assistenz: Damian Sercombe
Sprache: auf Deutsch
Vorlesung: Di, Do, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, verschiedene Termine
Klausur: Datum wird noch bekanntgegeben
Diese Vorlesung setzt die Lineare Algebra fort. Behandelt werden Gruppen, Ringe, Körper sowie Anwendungen in der Zahlentheorie und Geometrie. Höhepunkte der Vorlesung sind die Klassifikation endlicher Körper, die Unmöglichkeit der Winkeldreiteilung mit Zirkel und Lineal, die Nicht-Existenz von Lösungsformeln für allgemeine Gleichungen fünften Grades und das quadratische Reziprozitätsgesetz.
Lineare Algebra I und II
Elective
Dozent:in: Maximilian Stegemeyer
Sprache: auf Deutsch
Vorlesung: Di, Do, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
In der algebraischen Topologie werden topologische Räume untersucht, indem den Räumen auf bestimmte Weise algebraische Objekte, z.B. Gruppen, Vektorräume oder Ringe, zugeordnet werden. Diese Zuordnung geschieht meist auf eine Weise, die invariant unter Homotopie-Äquivalenzen ist, daher spricht man auch von Homotopie-Invarianten. Die algebraische Topologie untersucht also in erster Linie die Konstruktion und die Eigenschaften von Homotopie-Invarianten.
In dieser Vorlesung werden wir zunächst der Begriff der Fundamentalgruppe wiederholen und der Zusammenhang zur Überlagerungstheorie studieren. Danach werden die singulären Homologie-Gruppen eines topologischen Raums eingeführt und ausführlich untersucht. Zum Schluss gehen wir noch auf Kohomologie- und Homotopie-Gruppen und ihr Verhältnis zur singulären Homologie ein. Zudem werden wir zahlreiche Anwendungen dieser Invarianten auf topologische und geometrische Probleme kennenlernen.
Topologie
Elective
Funktionentheorie
Dozent:in: Stefan Kebekus
Assistenz: Andreas Demleitner
Sprache: auf Deutsch
Vorlesung: Di, Do, 8-10 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Klausur: Datum wird noch bekanntgegeben
Diese Vorlesung beschäftigt sich mit der Theorie der komplex differenzierbaren komplexwertigen Funktionen einer komplexen Veränderlichen. Sie werden lernen, dass diese viel starrer sind als die differenzierbaren reellwertigen Funktionen einer reellen Veränderlichen und in ihren Eigenschaften eher Polynomfunktionen ähneln. Die Funktionentheorie ist grundlegend für das Studium weiter Teile der Mathematik, insbesondere der Zahlentheorie und der algebraischen Geometrie, und ihre Anwendungen reichen bis in die Wahrscheinlichkeitstheorie, Funktionalanalysis und Mathematische Physik.
Analysis I und II, Lineare Algebra I
Elective
Model Theory (Modelltheorie)
Dozent:in: Amador Martín Pizarro
Assistenz: Charlotte Bartnick
Sprache: auf Englisch
Vorlesung: Di, Do, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Die Vorlesung wird voraussichtlich auf Englisch gehalten.
In this course the basics of geometric model theory will be discussed and concepts such as quantifier elimination and categoricity will be introduced. A theory has quantifier elimination if every formula is equivalent to a quantifier-free formula. For the theory of algebraically closed fields of fixed characteristic, this is equivalent to requiring that the projection of a Zariski-constructible set is again Zariski-constructible. A theory is called \(\aleph_1\)-categorical if all the models of cardinality \(\aleph_1\) are isomorphic. A typical example is the theory of non-trivial \(\mathbb Q\)-vector spaces. The goal of the course is to understand the theorems of Baldwin-Lachlan and of Morley to characterize \(\aleph_1\)-categorical theories.
notwendig: Mathematische Logik \
nützlich: Algebra und Zahlentheorie
Elective
Variationsrechnung
Dozent:in: Guofang Wang
Assistenz: Florian Johne
Sprache: auf Deutsch
Vorlesung: Mo, Mi, 10-12 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Das Ziel der Variationsrechnung ist, gewisse mathematisch fassbare Größen zu minimieren oder zu maximieren. Genauer gesagt betrachten wir auf
\(\Omega \subset {\mathbb R}^n\) Funktionale bzw. Variationsintegrale der Form
\[F (u) = \int_\Omega f(x,u (x ),Du (x))dx, \quad \hbox{ f\"ur } u : \Omega\to {\mathbb R}\]
Beispiele sind Bogenlänge und Flächeninhalt, sowie Energien von Feldern in der Physik. Die zentrale Fragestellung ist die Existenz von Minimierern. Nach einer kurzen Vorstellu\
ng der funktionalanalytischen Hilfsmittel werden wir zunächst einige notwendige und hinreichende Bedingungen für die Existenz von Minimierer kennenlernen. Wir werden sehen, dass Kompaktheit dabei eine ausgesprochen wichtige Rolle spielt. Anschließend werden wir einige Techniken vorstellen, die uns in Spezialfällen helfen, auch ohne Kompaktheit auszukommen: Die sogenannte kompensierte Kompaktheit und die konzentrierte Kompaktheit.
notwendig: Funktionalanalysis \
nützlich: PDE, numerische PDE
Elective
Linear Algebraic Groups
Dozent:in: Abhishek Oswal
Assistenz: Damian Sercombe
Sprache: auf Englisch
Vorlesung: Mo, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Es liegen noch keine Informationen vor.
Es liegen noch keine Informationen vor.
Elective
Topics in Mathematical Physics
Dozent:in: Chiara Saffirio
Sprache: auf Englisch
Vorlesung: Mo, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Fragen zur Vorlesung können gerne auf Deutsch gestellt werden.
Dieser Kurs bietet eine Einführung in analytische Methoden der Mathematischen Physik mit besonderem Schwerpunkt auf der Quantenmechanik von Vielteilchensystemen. Im Zentrum steht der rigorose Beweis der Stabilität der Materie für Coulomb-Systeme wie Atome und Moleküle. Die zentrale Frage - warum makroskopische Objekte, die aus geladenen Teilchen bestehen, unter elektromagnetischen Kräften nicht kollabieren - blieb in der klassischen Physik ungelöst und entbehrte selbst in der frühen Quantenmechanik einer heuristischen Erklärung. Bemerkenswerterweise war der Beweis der Stabilität der Materie das erste Beispiel dafür, dass die Mathematik eine grundlegende physikalische Frage eindeutig beantworten konnte, und ein früher und bedeutender Erfolg der Quantenmechanik.
Inhalte:
Analysis III und Lineare Algebra. \
Vorkenntnisse in Physik sind nicht erforderlich; alle relevanten physikalischen Konzepte werden im Kurs von Grund auf eingeführt.
Elective
Lernen durch Lehren
Organisation: Susanne Knies
Sprache: auf Deutsch
Was macht ein gutes Tutorat aus? Im ersten Workshop wird diese Frage diskutiert und es werden Tipps und Anregungen mitgegeben. Im zweiten Workshop werden die Erfahrungen ausgetauscht.
Elective
Praktische Übung zu 'Introduction to Theory and Numerics of Partial Differential Equations'
Dozent:in: Patrick Dondl
Sprache: auf Englisch
Die Praktische Übung begleitet die gleichnamige Vorlesung mit Programmieraufgaben zum Vorlesungsstoff.
Siehe bei der Vorlesung – zusätzlich: Programmierkenntnisse.
Elective
Praktische Übung zu 'Theory and Numerics of Partial Differential Equations – Selected Nonlinear Problems'
Dozent:in: Sören Bartels
Assistenz: Tatjana Schreiber
Sprache: auf Englisch
In the practical exercises accompanying the lecture 'Theory and Numerics for Partial Differential Equations – Selected Nonlinear Problems', the algorithms developed and analyzed in the lecture are implemented and tested experimentally. The implementation can be carried out in the programming languages Matlab, C++ or Python. Elementary programming knowledge is assumed.
siehe bei der Vorlesung
Elective
Bitte beachten Sie die in den Kommentaren zum Vorlesungsverzeichnis veröffentlichten Anmeldemodalitäten zu den einzelnen Seminaren: In der Regel erfolgt die Platzvergabe nach Voranmeldung per E-Mail bei der Vorbesprechung am Ende der Vorlesungszeit des Sommersemesters. Anschließend müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft vom 1. August 2025 bis voraussichtlich 8. Oktober 2025.
Dozent:in: Wolfgang Soergel
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Di, 14-16 Uhr, SR 127, Ernst-Zermelo-Str. 1
Voranmeldung: Bei Interesse gerne Nachricht an Wolfgang Soergel
Vorbesprechung 17.07., 12:15
Struktur nichtkommutativer Ringe mit Anwendungen auf Darstellungen endlicher Gruppen.
notwendig: Lineare Algebra I und II \
nützlich: Algebra und Zahlentheorie
Elective
Seminar: Minimalflächen
Dozent:in: Guofang Wang
Sprache: Vorträge/Teilnahme auf Deutsch oder auf Englisch möglich
Seminar: Mi, 16-18 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 30.07., SR 125, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Minimalflächen sind Flächen im Raum mit „minimalem“ Flächeninhalt und lassen sich mithilfe holomorpher Funktionen beschreiben. Sie treten u.a. bei der Untersuchung von Seifenhäuten und der Konstruktion stabiler Objekte (z.B. in der Architektur) in Erscheinung. Bei der Untersuchung von Minimalflächen kommen elegante Methoden aus verschiedenen mathematischen Gebieten wie der Funktionentheorie, der Variationsrechnung, der Differentialgeometrie und der partiellen Differentialgleichung zur Anwendung.
Elective