Achtung: Es gibt einige kurzfristige Raumänderungen!
Differentialgeometrie II – Geometrie der Untermannigfaltigkeiten
Vorlesung: Mo, Mi, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Guofang Wang
Assistenz: Xuwen Zhang
Sprache: auf Deutsch
In der Vorlesung diskutieren wir die Geometrie der Untermannigfaltigkeiten euklidischer Räume. Beispiele für solche Untermannigfaltigkeiten sind Kurven in der Ebene und Flächen im 3-dimensionalen Raum. Im 1. Teil führen wir als Grundlage die äußere Geometrie der Untermannigfaltigkeiten ein, z. B. die zweite Fundamentalform, die mittlere Krümmung, die erste Variation des Flächeninhalts, die Gleichungen von Gauss, Codazzi und Ricci. Im 2. Teil untersuchen wir die minimale Hyperflächen (Minimalflächen), die Hyperflächen mit konstanter mittlerer Krümmung und die geometrischen Ungleichungen, die isoperimetrische Ungleichung und ihre Verallgemeinerungen.
Analysis III und Differentialgeometrie oder "Kurven und Flächen"
Elective
Vorlesung: Di, Do, 8-10 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Wolfgang Soergel
Assistenz: Xier Ren
Sprache: auf Deutsch
In der linearen Algebra haben Sie lineare Gleichungssysteme studiert. In der kommutativen Algebra studieren wir polynomiale Gleichungssysteme wie \(x^2+y^2=1\) und ihre Lösungsmengen, die algebraischen Varietäten. Es wird sich herausstellen, dass so eine Varietät in enger Beziehung steht zum Ring der Einschränkungen von Polynomfunktionen auf besagte Varietät, und dass wir diese Beziehung extrapolieren können zu einem geometrischen Verständnis beliebiger kommutativer Ringe, nicht zuletzt des Rings der ganzen Zahlen. In diesem Begriffsgebäude wachsen die kommutative Algebra, die algebraische Geometrie und die Zahlentheorie zusammen. Die Vorlesung hat das Ziel, den Hörer in diese Begriffswelt einzuführen. Wir werden einen besonderen Schwerpunkt auf die Dimension algebraischer Varietäten und ihr Schnittverhalten legen, das die aus der linearen Algebra bekannten Phänomene auf den Fall polynomialer Gleichungssysteme verallgemeinert.
notwendig: Lineare Algebra I+II
nützlich: Algebra und Zahlentheorie
Elective
Vorlesung: Di, Do, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Klausur: Datum wird noch bekanntgegeben
Dozent:in: Amador Martín Pizarro
Assistenz: Stefan Ludwig
Sprache: auf Deutsch
Dieser einführende Kurs in die mathematische Logik besteht aus mehreren Teilen. Es werden die Grundlagen der Prädikatenlogik und eine kurze Einleitung in die Modelltheorie sowie das Axiomensystem der Mengenlehre behandelt. Das Ziel der Vorlesung ist es, den rekursionstheoretischen Gehalt des Prädikatenkalküls, insbesondere die sogenannte Peano-Arithmetik und die Gödelschen Unvollständigkeitssätze, zu verstehen.
Grundlegende Mathematikkenntnisse aus Erstsemestervorlesungen
Elective
Vorlesung: Di, Do, 10-12 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Klausur 22.07.
Dozent:in: Heike Mildenberger
Assistenz: Hannes Jakob
Sprache: auf Deutsch
Ein topologischer Raum besteht aus einer Grundmenge \(X\) und einer Festlegung der Menge der offenen Teilmengen der Grundmenge, die Topologie auf \(X\) genannt wird. Beispiele über den Grundmengen \(\mathbb R\) und \({\mathbb R}^n\) kommen in den Analysis-Vorlesungen vor. Das mathematische Fach \glqq{}Topologie\grqq\ ist die Lehre über topologische Räume und die Erforschung ebendieser. Unsere Vorlesung ist eine Einführung in die mengentheoretische und in die algebraische Topologie.
Analysis I und II, Lineare Algebra I
Elective
Vorlesung: Mo, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Mikhail Tëmkin
Sprache: auf Englisch
The notion of a manifold is fundamental importance. On one hand, it is a common ground for many branches of pure and applied mathematics, as well as mathematical physics. On the other hand, it itself is a lush source of elegant, unexpected and structural results. Next, algebraic topology is to mathematics what the periodic table is to chemistry: it offers order to what seems to be chaotic (more precisely, to topological spaces of which manifolds is an important example). Finally, differential topology studies smooth manifolds using topological tools. As it turns out, narrowing the scope to manifolds provides many new beautiful methods, structure and strong results, that are applicable elsewhere -- as we will see in the course. Necessary notions from algebraic topology will be covered in the beginning.
Mengentheoretische Topologie (z.B. aus der Topologie-Vorlesung vom Sommersemester 2024)
Elective
Vorlesung: Mi, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Dozent:in: Amador Martín Pizarro
Assistenz: Charlotte Bartnick
Sprache: auf Deutsch
Gruppen, die keine nicht trivialen Normalteiler enthalten, heißen einfache Gruppen. Ähnlich wie Primzahlen für die natürlichen Zahlen bilden einfache Gruppen die Bausteine für endliche Gruppen. Man sieht leicht, dass abelsche endliche einfache Gruppen zyklisch sind. Nicht abelsche Beispiele sind alternierende Gruppen sowie die Gruppen vom Lie-Typ.
Die Klassifikation von endlichen einfachen Gruppen geht weit über den Rahmen dieses Kurses hinaus. Wir werden jedoch einige der wiederkehrenden Ideen der Klassifikation veranschaulichen und insbesondere das folgende Ergebnis von Brauer und Fowler beweisen:
Theorem: Sei G eine endliche Gruppe von gerader Ordnung derart, dass das Zentrum ungerade Ordnung besitzt. Dann gibt es ein Element \(g \neq 1_G\) mit \(|G| < |C_G (g)|^3\) .
Diesen Theorem hatte besonders großen Einfluss auf die Klassifikation endlicher einfacher Gruppe, da es suggeriert, dass diese durch Untersuchung der Zentralisatoren von Elementen von Ordnung 2 klassifiziert werden könnten.
Algebra und Zahlentheorie
Elective
Steilkurs Schemata
Vorlesung: Mo, 12-14 Uhr, SR 403, Ernst-Zermelo-Str. 1, Termin noch unter Vorbehalt!
Übung: Do, 14-16 Uhr, -, -, Termin noch unter Vorbehalt!
Die Vorlesung wird durch Übungen und einen umfangreicheren Selbststudiumsteil als üblich ersetzt. Die Vorlesung zählt daher wie eine vierstündige Vorlesung.
Dozent:in: Andreas Demleitner
Sprache: auf Deutsch
Elective
Organisation: Susanne Knies
Sprache: auf Deutsch
Was macht ein gutes Tutorat aus? Im ersten Workshop wird diese Frage diskutiert und es werden Tipps und Anregungen mitgegeben. Im zweiten Workshop werden die Erfahrungen ausgetauscht.
Elective
Praktische Übung Stochastik
Mo, 14-16 Uhr, PC-Pool Raum 201, Hermann-Herder-Str. 10
Dozent:in: Sebastian Stroppel
Sprache: auf Deutsch
Die praktische Übung richtet sich an Studierende, die die Vorlesungen Stochastik I und II bereits gehört haben bzw. den zweiten Teil in diesem Semester hören. Es werden computerbasierte Methoden diskutiert, die das Verständnis des Stoffes der Vorlesung vertiefen und weitere Anwendungsbeispiele aufzeigen sollen. Dazu wird die Programmiersprache python verwendet. Nach einer Einführung in python werden u. a. Verfahren der deskriptiven Statistik und graphischen Auswertung von Daten betrachtet, die numerische Erzeugung von Zufallszahlen erläutert sowie parametrische und nichtparametrische Tests und lineare Regressionsverfahren diskutiert. Vorkenntnisse in python und/oder Programmierkenntnisse werden dabei nicht vorausgesetzt.
Analysis I+II, Lineare Algebra I+II, Stochastik I+II (Stochastik II kann parallel gehört werden)
Elective
Do, 14-16 Uhr, PC-Pool Raum -100, Hermann-Herder-Str. 10
Dozent:in: Carola Heinzel
Assistenz: Samuel Adeosun
Sprache: auf Englisch
This course introduces the foundational concepts and practical skills necessary for understanding and implementing machine learning models, with a particular focus on deep learning and neural networks. Students will progress from basic programming skills in Python , with a focus on the PyTorch library, to advanced topics such as training multi-layer perceptrons, optimization techniques, and transformer architectures. By the end of the course, participants will have the ability to implement and analyze neural networks, apply optimization strategies, and understand modern transformer-based models for tasks such as text generation and time series analysis.
Programmiergrundkenntnisse und Grundkenntnisse in Stochastik.
Elective
Di, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Dozent:in: Peter Pfaffelhuber
Assistenz: Sebastian Stroppel
Sprache: auf Englisch
Lean4 is both, a programming language and an interactive theorem prover. By the latter, we mean software that is able to check mathematical proofs. It is interactive since the software tells you what remains to be proven after every line of code. The course is an introduction to this technique, with examples from various fields of mathematics. Lean4 is special since researchers all over the world are currently building a library of mathematical theories, which contains at the moment around 1.5 million lines of code. I aim to cover basics from calculus, algebra, topology and measure theory in Lean4.
Analysis I und II, Lineare Algebra I
Elective
Die Seminarplätze werden in der Regel am Ende der Vorlesungszeit des Wintersemesters vergeben. Im Kommentierten Vorlesungsverzeichnis wird für jedes Seminar beschrieben, ob und wie eine Voranmeldung erfolgen muss und wann die Vorbesprechung stattfindet.Sofern Sie einen Platz in einem Seminar erhalten haben, müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft voraussichtlich vom 1. März bis 14. April 2025.
Seminar: Do, 10-12 Uhr, SR 403, Ernst-Zermelo-Str. 1
Voranmeldung: Per E-Mail an Wolfgang Soergel
Vorbesprechung 28.01., 14:15, SR 127, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Wolfgang Soergel
Assistenz: Damian Sercombe
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Dieses Seminar soll in die Theorie der linearen algebraischen Gruppen einführen. Lineare algebraische Gruppen sind Verallgemeinerungen der aus der linearen Algebra bekannten Matrizengruppen.
Ich stelle mir ein Format vor, in dem ich oder Sercombe vortragen und dazwischen die Seminarteilnehmer eigene Vorträge halten. Das Seminar ist eine sinnvolle Ergänzung zur kommutativen Algebra, auf die auch je länger desto mehr Bezug genommen werden wird.
Algebra und Zahlentheorie (wobei die Details der Galoistheorie und Körpertheorie weniger relevant sind als die allgemeine Theorie der Gruppen und Ringe) und Lineare Algebra.
Elective
Seminar: Di, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 04.02., 12:15, SR 218, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Ernst Kuwert
Thema des Seminars ist der curve shortening flow. Danach bewegt sich eine geschlossene Kurve \(c\) im \({\mathbb R}^2\) nach dem Gesetz \[\frac{\partial c}{\partial t} = \varkappa \nu.\] Als Hauptergebnis wollen wir zeigen, dass eine eingebettete Kurve \(c\) nach endlicher Zeit auf einen Punkt kontrahiert und dabei asymptotisch rund wird (Satz von Grayson). Dies ist erstaunlich, da eingebettete Kurven in der Ebene sehr kompliziert sein können.
Als Techniken werden wir u.a. das Maximumprinzip, eine Monotonieformel, Krümmungsabschätzungen, Blow-up-Argumente kennenlernen. Der {\em curve shortening flow} ist ein einfacher Prototyp für Evolutionsgleichungen mit zentralen Anwendungen in der Geometrie.
Analysis I–III
Elective
Seminar: Di, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Vorbesprechung 04.02., 10:00, SR 318, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Nadine Große
Assistenz: Maximilian Stegemeyer
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Auf einer Riemannschen Mannigfaltigkeit \((M,g)\) kann durch Paralleltransport entlang einer Kurve eine Isometrie zwischen den Tangentialräumen an verschiedenen Punkten gefunden werden. Beschränkt man sich auf geschlossene Kurven, so erhält man eine Gruppe von linearen Isometrien des Tangentialraums eines Punktes. Diese Gruppe hängt bis auf Isomorphismus nur von der Riemannschen Metrik und der Mannigfaltigkeit – nicht aber vom gewählten Punkt – ab. Man bezeichnet diese Gruppe als die \textit{Holonomie-Gruppe} von \((M,g)\). Die Holonomie-Gruppe enthält wichtige Informationen über die Metrik und über zusätzliche geometrische Strukturen der Mannigfaltigkeit.
Im ersten Teil dieses Seminars wollen wir das Konzept der Holonomiegruppe verstehen. Dafür werden wir Zusammenhänge auf Hauptfaserbündeln benutzen und zunächst noch allgemeiner den Begriff der Holonomiegruppe eines Zusammenhangs auf einem Hauptfaserbündel betrachten.
Mit den erlernten Methoden über Zusammenhänge auf Hauptfaserbündeln lassen sich dann auch \textit{charakteristische Klassen} behandeln. Dies sind Kohomologieklassen in der de-Rham-Kohomologie einer Mannigfaltigkeit, die für ein gegebenes Vektorbündel über der Mannigfaltigkeit konstruiert werden können. Im letzten Teil des Seminars werden wir daher auch diese charakteristischen Klassen, ihre Konstruktion und deren Anwendungen kennen lernen.
Differentialgeometrie I
Elective
Seminar: Di, 16-18 Uhr, SR 403, Ernst-Zermelo-Str. 1
Vorbesprechung 29.01., 13:15, Raum 313, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Heike Mildenberger
Assistenz: Maxwell Levine
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Das Auswahlaxiom gehört zu den akzeptierten unbeweisbaren Grundannahmen. Es sagt, dass jede Menge \(M\) nicht leerer Mengen eine Auswahlfunktion hat, das ist eine Funktion \(f : M \to \bigcup M\) mit der Eigenschaft \(\forall x \in M\), \(f(x) \in x\). Auf der Basis der anderen Axiome ZF von Zermelo und Fraenkel gibt es zahlreiche zum Auswahlaxiom äquivalente Aussagen, zum Beispiel die Wohlordenbarkeit jeder Menge und das Lemma von Zorn. Wir studieren in diesem Seminar Modelle der Axiome ZF, in denen das Auswahlaxiom explizit negiert wird. Am Anfang stehen Modelle zum Beweis des folgenden Satzen von Cohen aus dem Jahre 1963: Wenn ZF konsistent ist, so auch ZF und das Negat von AC. Ein Jahr später zeigte Solovay: Es gibt ZF-Modelle, in denen jede Teilmenge der reellen Zahlen Lebesgue-messbar ist, es also keine Vitali-Menge gibt. Zwanzig Jahre später fand man: Eine stark unerreichbare Kardinalzahl ist zur Konstruktion eines solchen Modells unerlässlich. Zahlreiche Fragen nach Abstufungen und besonderen Formen der Negation des Auswahlaxioms sind offen.
Mengenlehre
Elective
Seminar über p-adische Geometrie
Seminar: Mo, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Vorbesprechung 13.02., 14:30, SR 404, Ernst-Zermelo-Str. 1, Please email Abhisehk Oswal, and Ben Snodgrass if you are interested in the seminar but cannot make it to the preliminary meeting.
Dozent:in: Abhishek Oswal
Assistenz: Ben Snodgrass
Sprache: auf Englisch
It has become clear over the last several decades that \(p\)-adic techniques play an indispensable role in arithmetic geometry. At an elementary level, \(p\)-adic numbers provide a compact and convenient language to talk about congruences between integers. Concretely, just as the field of real numbers \(\mathbb R\) arise as the completion of the field \(\mathbb Q\) of rational numbers with respect to the usual notion of distance on \(\mathbb Q\), the field \(\mathbb Q_p\) of \(p\)-adic numbers arise as the completion of \(\mathbb Q\) with respect to an equally natural \(p\)-adic metric. Roughly, in the \(p\)-adic metric, an integer \(n\) is closer to \(0\), the larger the power of the prime number \(p\) that divides it. A general philosophy in number theory is then to treat all these completions \(\mathbb R\), \(\mathbb Q_p\) of the field \(\mathbb Q\) on an equal footing. As we shall see in this course, familiar concepts from real analysis (i.e. notions like analytic functions, derivatives, measures, integrals, Fourier analysis, real and complex manifolds, Lie groups...), have completely parallel notions over the \(p\)-adic numbers.
While the Euclidean topology of \(\mathbb R^n\) is rather well-behaved (so one may talk meaningfully about paths, fundamental groups, analytic continuation, ...), the \(p\)-adic field \(\mathbb Q_p\) on the other hand is totally disconnected. This makes the task of developing a well-behaved notion of global \(p\)-adic analytic manifolds/spaces rather difficult. In the 1970s, John Tate’s introduction of the concept of rigid analytic spaces, solved these problemsand paved the way for several key future developments in \(p\)-adic geometry.
The broad goal of this course will be to introduce ourselves to this world of \(p\)-adic analysis and rigid analytic geometry (due to Tate). Along the way, we shall see a couple of surprising applications of this circle of ideas to geometry and arithmetic. Specifically, we plan to learn Dwork’s proof of the fact that the zeta function of an algebraic variety over a finite field is a rational function.
Field theory, Galois theory and Commutative algebra.
Some willingness to accept unfamiliar concepts as black boxes. Prior experience with algebraic number theory, or algebraic geometry will be beneficial but not necessary.
Elective