Dozent:in: Nadine Große
Assistenz: Jonah Reuß
Sprache: auf Deutsch
Vorlesung: Mi, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, verschiedene Termine
Klausur 29.07., 08:30-11:30, HS Rundbau, Albertstr. 21
Nachklausur 08.10., 08:30-11:30, HS Weismann-Haus, Albertstr. 21a
In der Vorlesung soll eine Einführung in die Elementargeometrie im euklidischen und nicht-euklidischen Raum und deren mathematischen Grundlagen gegeben werden. Als Beispiele von Inzidenzgeometrien lernen wir die euklidische, hyperbolische und projektive Geometrie kennen und studieren deren Symmetriegruppen.
Hauptthema danach ist die axiomatische Charakterisierung der euklidischen Ebene. Im Zentrum steht die Geschichte des fünften Euklidischen Axioms (und die Versuche, es los zu werden).
Lineare Algebra I
Wahlpflichtmodul Mathematik
Dozent:in: Johannes Brutsche
Assistenz: Dario Kieffer
Sprache: auf Deutsch
Vorlesung: Fr, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig 14-täglich, verschiedene Termine
Klausur 05.09.
Nach dem in der Vorlesung Stochastik I erhaltenen Einblick in die Grundlagen sowie in verschiedene Methoden und Fragestellungen der Stochastik bzw. Wahrscheinlichkeitstheorie wird sich diese Vorlesung hauptsächlich statistischen Themen widmen, insbesondere solchen, die für Studierende des Lehramts an Gymnasien relevant sind. Aber auch für Studierende im B.Sc. Mathematik mit Interesse an Stochastik kann die Vorlesung eine (hoffentlich) nützliche Ergänzung und gute Grundlage für den späteren Besuch der Kursvorlesung „Mathematische Statistik“ sein.
Nach der Präzisierung des Begriffes „statistisches Modell“ werden Methoden zur Konstruktion von Schätzern (z.B. Maximum-Likelihood-Prinzip, Momentenmethode) und Gütekriterien für diese (Erwartungstreue, Konsistenz) besprochen. Außerdem werden Konfidenzintervalle und Hypothesentests eingeführt. Als weitere Anwendungen werden lineare Modelle betrachtet und falls die Zeit es erlaubt, weitere statistische Verfahren. Dabei werden auch die für viele Test- und Schätzverfahren nützlichen Eigenschaften von exponentiellen Familien und multivariaten Normalverteilungen vorgestellt.
Lineare Algebra I+II und Analysis I+II
Wahlpflichtmodul Mathematik
Differentialgeometrie II – Geometrie der Untermannigfaltigkeiten
Dozent:in: Guofang Wang
Assistenz: Xuwen Zhang
Sprache: auf Deutsch
Vorlesung: Mo, Mi, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
In der Vorlesung diskutieren wir die Geometrie der Untermannigfaltigkeiten euklidischer Räume. Beispiele für solche Untermannigfaltigkeiten sind Kurven in der Ebene und Flächen im 3-dimensionalen Raum. Im 1. Teil führen wir als Grundlage die äußere Geometrie der Untermannigfaltigkeiten ein, z. B. die zweite Fundamentalform, die mittlere Krümmung, die erste Variation des Flächeninhalts, die Gleichungen von Gauss, Codazzi und Ricci. Im 2. Teil untersuchen wir die minimale Hyperflächen (Minimalflächen), die Hyperflächen mit konstanter mittlerer Krümmung und die geometrischen Ungleichungen, die isoperimetrische Ungleichung und ihre Verallgemeinerungen.
Analysis III und Differentialgeometrie oder "Kurven und Flächen"
Wahlpflichtmodul Mathematik
Dozent:in: Patrick Dondl
Assistenz: Luciano Sciaraffia
Sprache: auf Deutsch
Vorlesung: Mo, 12-14 Uhr, HS II, Albertstr. 23b, Mi, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
Klausur 06.08., 14:00-16:00, HS Rundbau, Albertstr. 21
Achtung: Zeit- und Raumänderung!
Die lineare Funktionalanalysis, um die es in der Vorlesung geht, verwendet Konzepte der linearen Algebra wie Vektorraum, linearer Operator, Dualraum, Skalarprodukt, adjungierte Abbildung, Eigenwert, Spektrum, um Gleichungen in unendlichdimensionalen Funktionenräumen zu lösen, vor allem lineare Differentialgleichungen. Die algebraischen Begriffe müssen dazu durch topologische Konzepte wie Konvergenz, Vollständigkeit, Kompaktheit erweitert werden. Dieser Ansatz ist zu Beginn des 20. Jahrhunderts u. a. von Hilbert entwickelt worden, er gehört nun zum methodischen Fundament der Analysis, der Numerik, sowie der Mathematischen Physik, insbesondere der Quantenmechanik, und ist auch in anderen mathematischen Gebieten unverzichtbar.
Lineare Algebra I+II, Analysis I–III
Wahlpflichtmodul Mathematik
Dozent:in: Wolfgang Soergel
Assistenz: Xier Ren
Sprache: auf Deutsch
Vorlesung: Di, Do, 8-10 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
In der linearen Algebra haben Sie lineare Gleichungssysteme studiert. In der kommutativen Algebra studieren wir polynomiale Gleichungssysteme wie \(x^2+y^2=1\) und ihre Lösungsmengen, die algebraischen Varietäten. Es wird sich herausstellen, dass so eine Varietät in enger Beziehung steht zum Ring der Einschränkungen von Polynomfunktionen auf besagte Varietät, und dass wir diese Beziehung extrapolieren können zu einem geometrischen Verständnis beliebiger kommutativer Ringe, nicht zuletzt des Rings der ganzen Zahlen. In diesem Begriffsgebäude wachsen die kommutative Algebra, die algebraische Geometrie und die Zahlentheorie zusammen. Die Vorlesung hat das Ziel, den Hörer in diese Begriffswelt einzuführen. Wir werden einen besonderen Schwerpunkt auf die Dimension algebraischer Varietäten und ihr Schnittverhalten legen, das die aus der linearen Algebra bekannten Phänomene auf den Fall polynomialer Gleichungssysteme verallgemeinert.
notwendig: Lineare Algebra I+II
nützlich: Algebra und Zahlentheorie
Wahlpflichtmodul Mathematik
Dozent:in: Amador Martín Pizarro
Assistenz: Stefan Ludwig
Sprache: auf Deutsch
Vorlesung: Di, Do, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Klausur 28.07., 14:00-17:00
Dieser einführende Kurs in die mathematische Logik besteht aus mehreren Teilen. Es werden die Grundlagen der Prädikatenlogik und eine kurze Einleitung in die Modelltheorie sowie das Axiomensystem der Mengenlehre behandelt. Das Ziel der Vorlesung ist es, den rekursionstheoretischen Gehalt des Prädikatenkalküls, insbesondere die sogenannte Peano-Arithmetik und die Gödelschen Unvollständigkeitssätze, zu verstehen.
Grundlegende Mathematikkenntnisse aus Erstsemestervorlesungen
Wahlpflichtmodul Mathematik
Dozent:in: Heike Mildenberger
Assistenz: Hannes Jakob
Sprache: auf Deutsch
Vorlesung: Di, Do, 10-12 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
Klausur 22.07.
Nachklausur 13.10.
Ein topologischer Raum besteht aus einer Grundmenge \(X\) und einer Festlegung der Menge der offenen Teilmengen der Grundmenge, die Topologie auf \(X\) genannt wird. Beispiele über den Grundmengen \(\mathbb R\) und \({\mathbb R}^n\) kommen in den Analysis-Vorlesungen vor. Das mathematische Fach \glqq{}Topologie\grqq\ ist die Lehre über topologische Räume und die Erforschung ebendieser. Unsere Vorlesung ist eine Einführung in die mengentheoretische und in die algebraische Topologie.
Analysis I und II, Lineare Algebra I
Wahlpflichtmodul Mathematik
Dozent:in: Angelika Rohde
Assistenz: Johannes Brutsche
Sprache: auf Englisch
Vorlesung: Di, Do, 10-12 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, Termin wird noch festgelegt
Klausur 22.09., 10:00-12:00
Das Problem der Axiomatisierung der Wahrscheinlichkeitstheorie wurde 1933 von Kolmogorov gelöst: Eine Wahrscheinlichkeit ist ein Maß auf der Menge aller möglichen Versuchsausgänge eines zufälligen Experiments. Von diesem Ausgangspunkt entwickelt sich die gesamte moderne Wahrscheinlichkeitstheorie mit zahlreichen Bezügen zu aktuellen Anwendungen.
Die Vorlesung ist eine systematische Einführung dieses Gebietes auf maßtheoretischer Grundlage und beinhaltet unter anderem den zentralen Grenzwertsatz in der Version von Lindeberg-Feller, bedingte Erwartungen und reguläre Versionen, Martingale und Martingalkonvergenzsätze, das starke Gesetz der großen Zahlen und den Ergodensatz sowie die Brown'sche Bewegung.
notwendig: Analysis I+II, Lineare Algebra I, Stochastik I
nützlich: Analysis III
Wahlpflichtmodul Mathematik
Probability Theory III: Stochastic Analysis (Wahrscheinlichkeitstheorie III: Stochastische Analysis)
Dozent:in: David Criens
Assistenz: Samuel Adeosun
Sprache: auf Englisch
Vorlesung: Mi, 14-16 Uhr, HS II, Albertstr. 23b, Do, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
This lecture builds the foundation of one of the key areas of probability theory: stochastic analysis. We start with a rigorous construction of the It^o integral that integrates against a Brownian motion (or, more generally, a continuous local martingale). In this connection, we learn about It^o's celebrated formula, Girsanov’s theorem, representation theorems for continuous local martingales and about the exciting theory of local times. Then, we discuss the relation of Brownian motion and Dirichlet problems. In the final part of the lecture, we study stochastic differential equations, which provide a rich class of stochastic models that are of interest in many areas of applied probability theory, such as mathematical finance, physics or biology. We discuss the main existence and uniqueness results, the connection to the martingale problem of Stroock-Varadhan and the important Yamada-Watanabe theory.
Wahrscheinlichkeitstheorie I und II (Stochastische Prozesse)
Wahlpflichtmodul Mathematik
Dozent:in: Sören Bartels
Assistenz: Tatjana Schreiber
Sprache: auf Englisch
Vorlesung: Mi, 10-12 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
The lecture addresses algorithmic aspects in the practical realization of mathematical methods in big data analytics and machine learning. The first part will be devoted to the development of recommendation systems, clustering methods and sparse recovery techniques. The architecture and approximation properties as well as the training of neural networks are the subject of the second part. Convergence results for accelerated gradient descent methods for nonsmooth problems will be analyzed in the third part of the course. The lecture is accompanied by weekly tutorials which will involve both, practical and theoretical exercises.
Numerik I, II oder Basics in Applied Mathematics
Wahlpflichtmodul Mathematik
Dozent:in: Mikhail Tëmkin
Sprache: auf Englisch
Vorlesung: Mo, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
The notion of a manifold is fundamental importance. On one hand, it is a common ground for many branches of pure and applied mathematics, as well as mathematical physics. On the other hand, it itself is a lush source of elegant, unexpected and structural results. Next, algebraic topology is to mathematics what the periodic table is to chemistry: it offers order to what seems to be chaotic (more precisely, to topological spaces of which manifolds is an important example). Finally, differential topology studies smooth manifolds using topological tools. As it turns out, narrowing the scope to manifolds provides many new beautiful methods, structure and strong results, that are applicable elsewhere -- as we will see in the course. Necessary notions from algebraic topology will be covered in the beginning.
Mengentheoretische Topologie (z.B. aus der Topologie-Vorlesung vom Sommersemester 2024)
Wahlpflichtmodul Mathematik
Dozent:in: Amador Martín Pizarro
Assistenz: Charlotte Bartnick
Sprache: auf Deutsch
Vorlesung: Mi, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt
Gruppen, die keine nicht trivialen Normalteiler enthalten, heißen einfache Gruppen. Ähnlich wie Primzahlen für die natürlichen Zahlen bilden einfache Gruppen die Bausteine für endliche Gruppen. Man sieht leicht, dass abelsche endliche einfache Gruppen zyklisch sind. Nicht abelsche Beispiele sind alternierende Gruppen sowie die Gruppen vom Lie-Typ.
Die Klassifikation von endlichen einfachen Gruppen geht weit über den Rahmen dieses Kurses hinaus. Wir werden jedoch einige der wiederkehrenden Ideen der Klassifikation veranschaulichen und insbesondere das folgende Ergebnis von Brauer und Fowler beweisen:
Theorem: Sei G eine endliche Gruppe von gerader Ordnung derart, dass das Zentrum ungerade Ordnung besitzt. Dann gibt es ein Element \(g \neq 1_G\) mit \(|G| < |C_G (g)|^3\) .
Diesen Theorem hatte besonders großen Einfluss auf die Klassifikation endlicher einfacher Gruppe, da es suggeriert, dass diese durch Untersuchung der Zentralisatoren von Elementen von Ordnung 2 klassifiziert werden könnten.
Algebra und Zahlentheorie
Wahlpflichtmodul Mathematik
Dozent:in: Ernst August v. Hammerstein
Assistenz: Sebastian Hahn
Sprache: auf Englisch
Vorlesung: Mo, 14-16 Uhr, HS II, Albertstr. 23b
Übung: Mi, 16-18 Uhr, SR 403, Ernst-Zermelo-Str. 1
Lévy-Prozesse sind das zeitstetige Analogon zu Irrfahrten (random walks) in diskreter Zeit, da sie definitionsgemäß ebenfalls unabhängige und stationäre Zuwächse besitzen. Sie bilden eine fundamentale Klasse stochastischer Prozesse, die vielfache Anwendungen in der Versicherungs- und Finanzmathematik, der Warteschlangentheorie und auch in der Physik und Telekommunikation gefunden haben. Auch die Brownsche Bewegung und der Poisson-Prozess, die vielleicht schon aus anderen Vorlesungen bekannt sind, gehören zu dieser Klasse. Trotz ihrer Reichhaltigkeit und Flexibilität sind Lévy-Prozesse üblicherweise sowohl analytisch wie auch numerisch sehr handhabbar, da ihre Verteilung durch ein einzelnes eindimensionales, unbegrenzt teilbares Wahrscheinlichkeitsmaß erzeugt wird.
Die Vorlesung beginnt mit einer Einführung in unbegrenzt teilbare Verteilungen und der Herleitung der berühmten Lévy-Khintchine-Formel. Danach wird erläutert, wie Lévy-Prozesse daraus entstehen und wie die Charakteristiken der Verteilungen die Pfadeigenschaften der zugehörigen Prozesse beeinflussen. Nach einem kurzen Blick auf die Methode der Subordination wird abschließend die Optionsbewertung in von Lévy-Prozessen getriebenen Finanzmarktmodellen diskutiert.
notwendig: Wahrscheinlichkeitstheorie I
nützlich: Wahrscheinlichkeitstheorie II (Stochastische Prozesse)
Wahlpflichtmodul Mathematik
Dozent:in: Thorsten Schmidt
Assistenz: Simone Pavarana
Sprache: auf Englisch
Vorlesung: Mi, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt
In this lecture we will study new and highly efficient tools from machine learning which are applied to stochastic problems. This includes neural SDEs as a generalisation of stochastic differential equations relying on neural networks, transformers as a versatile tool not only for languages but also for time series, transformers and GANs as generator of time series and a variety of applications in Finance and insurance such as (robust) deep hedging, signature methods and the application of reinforcement learning.
Wahrscheinlichkeitstheorie. Für einige Teile wird zudem ein gutes Verständnis stochastischer Prozesse gebraucht. In der Vorlesung wird dazu eine (sehr) kurze Einführung gegeben, so dass es für schnell Lernende möglich ist, der Veranstaltung auch ohne die Vorlesung 'Stochastische Prozesse' zu folgen.
Wahlpflichtmodul Mathematik
Dozent:in: Patrick Dondl
Assistenz: Eric Trébuchon
Sprache: auf Englisch
Vorlesung: Mi, 14-16 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt
This course provides a comprehensive introduction to mathematical modeling. We will learn the systematic process of translating real-world problems into mathematical frameworks, analyzing them using appropriate mathematical tools, and interpreting the results in practical contexts. The course covers both discrete and continuous modeling approaches, with emphasis on differential equations, variational problems, and optimization techniques. Through case studies in physics, biology, engineering, and economics, students will develop skills in model formulation, validation, and refinement. Special attention is given to dimensional analysis, stability theory, and numerical methods necessary for implementing solutions with a focus on numerical methods for ordinary differential equations. The course combines theoretical foundations with hands-on experience in computational tools for model simulation and analysis.
Analysis I, II, Lineare Algebra I, II, Numerik I, II
Wahlpflichtmodul Mathematik
Numerical Optimization
Dozent:in: Moritz Diehl
Assistenz: Léo Simpson
Sprache: auf Englisch
Übung / flipped classroom: Di, 14-16 Uhr, HS II, Albertstr. 23b
Klausur 20.08., 10:00-12:00
The aim of the course is to give an introduction into numerical methods for the solution of optimization problems in science and engineering. The focus is on continuous nonlinear optimization in finite dimensions, covering both convex and nonconvex problems. The course divided into four major parts:
The course is organized as inverted classroom based on lecture recordings and a lecture manuscript, with weekly alternating Q&A sessions and exercise sessions. The lecture is accompanied by intensive computer exercises offered in Python (6 ECTS) and an optional project (3 ECTS). The project consists in the formulation and implementation of a self-chosen optimization problem or numerical solution method, resulting in documented computer code, a project report, and a public presentation. Please check the website for further information.
notwendig: Analysis I–II, Lineare Algebra I–II
nützlich: Einführung in die Numerik
Wahlpflichtmodul Mathematik
Steilkurs Schemata
Dozent:in: Andreas Demleitner
Sprache: auf Deutsch
Vorlesung: Mo, 12-14 Uhr, SR 403, Ernst-Zermelo-Str. 1, Termin noch unter Vorbehalt!
Übung: Do, 14-16 Uhr, -, -, Termin noch unter Vorbehalt!
Die Vorlesung wird durch Übungen und einen umfangreicheren Selbststudiumsteil als üblich ersetzt. Die Vorlesung zählt daher wie eine vierstündige Vorlesung.
Wahlpflichtmodul Mathematik
Die Seminarplätze werden in der Regel am Ende der Vorlesungszeit des Wintersemesters vergeben. Im Kommentierten Vorlesungsverzeichnis wird für jedes Seminar beschrieben, ob und wie eine Voranmeldung erfolgen muss und wann die Vorbesprechung stattfindet.Sofern Sie einen Platz in einem Seminar erhalten haben, müssen Sie sich noch online zur Prüfung anmelden; der Anmeldezeitraum läuft voraussichtlich vom 1. März bis 14. April 2025.
Dozent:in: Diyora Salimova
Assistenz: Ilkhom Mukhammadiev
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Seminar: Mo, 12-14 Uhr, online, -
Voranmeldung: per E-Mail an Diyora Salimova
Vorbesprechung 14.04., 15:00, über Zoom (bitte schreiben Sie der Dozentein, falls der Termin nicht passt)
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
In recent years, deep learning have been successfully employed for a multitude of computational problems including object and face recognition, natural language processing, fraud detection, computational advertisement, and numerical approximations of differential equations. Such simulations indicate that neural networks seem to admit the fundamental power to efficiently approximate high-dimensional functions appearing in these applications.
The seminar will review some classical and recent mathematical results on approximation properties of deep learning. We will focus on mathematical proof techniques to obtain approximation estimates on various classes of data including, in particular, certain types of PDE solutions.
Grundlagen der Funktionalanalysis, der Numerik partieller Differentialgleichungen und der Wahrscheinlichkeitstheorie.
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Dozent:in: Wolfgang Soergel
Assistenz: Damian Sercombe
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Seminar: Do, 10-12 Uhr, SR 403, Ernst-Zermelo-Str. 1
Voranmeldung: Per E-Mail an Wolfgang Soergel
Vorbesprechung 28.01., 14:15, SR 127, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dieses Seminar soll in die Theorie der linearen algebraischen Gruppen einführen. Lineare algebraische Gruppen sind Verallgemeinerungen der aus der linearen Algebra bekannten Matrizengruppen.
Ich stelle mir ein Format vor, in dem ich oder Sercombe vortragen und dazwischen die Seminarteilnehmer eigene Vorträge halten. Das Seminar ist eine sinnvolle Ergänzung zur kommutativen Algebra, auf die auch je länger desto mehr Bezug genommen werden wird.
Algebra und Zahlentheorie (wobei die Details der Galoistheorie und Körpertheorie weniger relevant sind als die allgemeine Theorie der Gruppen und Ringe) und Lineare Algebra.
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Dozent:in: Ernst Kuwert
Assistenz: Florian Johne
Seminar: Di, 14-16 Uhr, SR 125, Ernst-Zermelo-Str. 1
Vorbesprechung 04.02., 12:15, SR 218, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Thema des Seminars ist der curve shortening flow. Danach bewegt sich eine geschlossene Kurve \(c\) im \({\mathbb R}^2\) nach dem Gesetz \[\frac{\partial c}{\partial t} = \varkappa \nu.\] Als Hauptergebnis wollen wir zeigen, dass eine eingebettete Kurve \(c\) nach endlicher Zeit auf einen Punkt kontrahiert und dabei asymptotisch rund wird (Satz von Grayson). Dies ist erstaunlich, da eingebettete Kurven in der Ebene sehr kompliziert sein können.
Als Techniken werden wir u.a. das Maximumprinzip, eine Monotonieformel, Krümmungsabschätzungen, Blow-up-Argumente kennenlernen. Der {\em curve shortening flow} ist ein einfacher Prototyp für Evolutionsgleichungen mit zentralen Anwendungen in der Geometrie.
Analysis I–III
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Dozent:in: Nadine Große
Assistenz: Maximilian Stegemeyer
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Seminar: Di, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Vorbesprechung 04.02., 10:00, SR 318, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Auf einer Riemannschen Mannigfaltigkeit \((M,g)\) kann durch Paralleltransport entlang einer Kurve eine Isometrie zwischen den Tangentialräumen an verschiedenen Punkten gefunden werden. Beschränkt man sich auf geschlossene Kurven, so erhält man eine Gruppe von linearen Isometrien des Tangentialraums eines Punktes. Diese Gruppe hängt bis auf Isomorphismus nur von der Riemannschen Metrik und der Mannigfaltigkeit – nicht aber vom gewählten Punkt – ab. Man bezeichnet diese Gruppe als die \textit{Holonomie-Gruppe} von \((M,g)\). Die Holonomie-Gruppe enthält wichtige Informationen über die Metrik und über zusätzliche geometrische Strukturen der Mannigfaltigkeit.
Im ersten Teil dieses Seminars wollen wir das Konzept der Holonomiegruppe verstehen. Dafür werden wir Zusammenhänge auf Hauptfaserbündeln benutzen und zunächst noch allgemeiner den Begriff der Holonomiegruppe eines Zusammenhangs auf einem Hauptfaserbündel betrachten.
Mit den erlernten Methoden über Zusammenhänge auf Hauptfaserbündeln lassen sich dann auch \textit{charakteristische Klassen} behandeln. Dies sind Kohomologieklassen in der de-Rham-Kohomologie einer Mannigfaltigkeit, die für ein gegebenes Vektorbündel über der Mannigfaltigkeit konstruiert werden können. Im letzten Teil des Seminars werden wir daher auch diese charakteristischen Klassen, ihre Konstruktion und deren Anwendungen kennen lernen.
Differentialgeometrie I
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Dozent:in: Heike Mildenberger
Assistenz: Maxwell Levine
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Seminar: Di, 16-18 Uhr, SR 403, Ernst-Zermelo-Str. 1
Vorbesprechung 29.01., 13:15, Raum 313, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Das Auswahlaxiom gehört zu den akzeptierten unbeweisbaren Grundannahmen. Es sagt, dass jede Menge \(M\) nicht leerer Mengen eine Auswahlfunktion hat, das ist eine Funktion \(f : M \to \bigcup M\) mit der Eigenschaft \(\forall x \in M\), \(f(x) \in x\). Auf der Basis der anderen Axiome ZF von Zermelo und Fraenkel gibt es zahlreiche zum Auswahlaxiom äquivalente Aussagen, zum Beispiel die Wohlordenbarkeit jeder Menge und das Lemma von Zorn. Wir studieren in diesem Seminar Modelle der Axiome ZF, in denen das Auswahlaxiom explizit negiert wird. Am Anfang stehen Modelle zum Beweis des folgenden Satzen von Cohen aus dem Jahre 1963: Wenn ZF konsistent ist, so auch ZF und das Negat von AC. Ein Jahr später zeigte Solovay: Es gibt ZF-Modelle, in denen jede Teilmenge der reellen Zahlen Lebesgue-messbar ist, es also keine Vitali-Menge gibt. Zwanzig Jahre später fand man: Eine stark unerreichbare Kardinalzahl ist zur Konstruktion eines solchen Modells unerlässlich. Zahlreiche Fragen nach Abstufungen und besonderen Formen der Negation des Auswahlaxioms sind offen.
Mengenlehre
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Dozent:in: Harald Binder
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Zur Beantwortung komplexer biomedizinischer Fragestellungen aus großen Datenmengen ist oft ein breites Spektrum an Analysewerkzeugen notwendig, z.B. Deep-Learning- oder allgemeiner Machine-Learning-Techniken, was häufig unter dem Begriff "`Medical Data Science"' zusammengefasst wird. Statistische Ansätze spielen eine wesentliche Rolle als Basis dafür. Eine Auswahl von Ansätzen soll in den Seminarvorträgen vorgestellt werden, die sich an kürzlich erschienenen Originalarbeiten orientieren. Die genaue thematische Ausrichtung wird noch festgelegt.
Gute Kenntnisse in Wahrscheinlichkeitstheorie und Mathematischer Statistik.
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Seminar: Numerik partieller Differentialgleichungen
Dozent:in: Sören Bartels
Assistenz: Vera Jackisch, Tatjana Schreiber
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Seminar: Mo, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Vorbesprechung 04.02., 12:00, Raum 209, Hermann-Herder-Str. 10, Bei Verhinderung bei der Vorbesprechung Anmeldung per E-Mail an Sören Bartels.
Im Seminar sollen weiterführende Themen der Theorie und Numerik partieller Differentialgleichungen behandelt werden. Dazu gehören die iterative Lösung der entstehenden linearen Gleichungssysteme mit Mehrgitter- und Gebietszerlegungsmethoden, die adaptive Verfeinerung von Finite-Elemente-Gittern, die Herleitung einer Approximationstheorie mit expliziten Konstanten sowie die Lösung nichtlinearer Probleme.
Einführung in Theorie und Numerik partieller Differentialgleichungen
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Seminar über p-adische Geometrie
Dozent:in: Abhishek Oswal
Assistenz: Ben Snodgrass
Sprache: auf Englisch
Seminar: Mo, 10-12 Uhr, SR 404, Ernst-Zermelo-Str. 1
Vorbesprechung 13.02., 14:30, SR 404, Ernst-Zermelo-Str. 1, Please email Abhisehk Oswal, and Ben Snodgrass if you are interested in the seminar but cannot make it to the preliminary meeting.
It has become clear over the last several decades that \(p\)-adic techniques play an indispensable role in arithmetic geometry. At an elementary level, \(p\)-adic numbers provide a compact and convenient language to talk about congruences between integers. Concretely, just as the field of real numbers \(\mathbb R\) arise as the completion of the field \(\mathbb Q\) of rational numbers with respect to the usual notion of distance on \(\mathbb Q\), the field \(\mathbb Q_p\) of \(p\)-adic numbers arise as the completion of \(\mathbb Q\) with respect to an equally natural \(p\)-adic metric. Roughly, in the \(p\)-adic metric, an integer \(n\) is closer to \(0\), the larger the power of the prime number \(p\) that divides it. A general philosophy in number theory is then to treat all these completions \(\mathbb R\), \(\mathbb Q_p\) of the field \(\mathbb Q\) on an equal footing. As we shall see in this course, familiar concepts from real analysis (i.e. notions like analytic functions, derivatives, measures, integrals, Fourier analysis, real and complex manifolds, Lie groups...), have completely parallel notions over the \(p\)-adic numbers.
While the Euclidean topology of \(\mathbb R^n\) is rather well-behaved (so one may talk meaningfully about paths, fundamental groups, analytic continuation, ...), the \(p\)-adic field \(\mathbb Q_p\) on the other hand is totally disconnected. This makes the task of developing a well-behaved notion of global \(p\)-adic analytic manifolds/spaces rather difficult. In the 1970s, John Tate’s introduction of the concept of rigid analytic spaces, solved these problemsand paved the way for several key future developments in \(p\)-adic geometry.
The broad goal of this course will be to introduce ourselves to this world of \(p\)-adic analysis and rigid analytic geometry (due to Tate). Along the way, we shall see a couple of surprising applications of this circle of ideas to geometry and arithmetic. Specifically, we plan to learn Dwork’s proof of the fact that the zeta function of an algebraic variety over a finite field is a rational function.
Field theory, Galois theory and Commutative algebra.
Some willingness to accept unfamiliar concepts as black boxes. Prior experience with algebraic number theory, or algebraic geometry will be beneficial but not necessary.
Wahlpflichtmodul Mathematik
Mathematisches Seminar
Seminar: Die Wiener-Chaos-Zerlegung und (nicht-)zentrale Grenzwertsätze
Dozent:in: Angelika Rohde
Assistenz: Gabriele Bellerino
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Wohingegen lineare Transformationen von Gaußprozessen ihre gaußsche Eigenschaft bewahren, gilt dies für nichtlineare Funktionale, beispielsweise additive Funktionale der Form \[\int_0^T f(X_s) ds\qquad \text{ oder }\qquad \sum_{k=1}^n f(X_{k/n}),\] im Allgemeinen nicht. Die Wiener-Chaos-Zerlegung bietet einen Rahmen zur Analyse nichtlinearer Funktionale von Gaußprozessen. Es handelt sich hierbei um eine orthogonale Zerlegung des Raumes \[L^2(\mathbb{P}) = \bigoplus_{k=1}^\infty \mathcal{H}_k\] der bezüglich \(\mathbb{P}\) quadratintegrierbaren Zufallsvariablen, wobei \(\mathbb{P}\) ein gaußsches Wahrscheinlichkeitsmaß ist. Dieses Konzept verallgemeinert dabei die Eigenschaften orthogonaler Polynome bezüglich eines Wahrscheinlichkeitsmaßes auf der reellen Achse auf ein (potentiell) unendlichdimensionales Szenario. Es stellt sich heraus, dass Elemente eines Wiener-Chaos \(\mathcal{H}_k\) als mehrfache Wiener-Itô-Integrale dargestellt werden können, welche wiederum gut verstandene Objekte sind.
In diesem Seminar werden wir die grundlegenden Eigenschaften des Wiener-Chaos untersuchen, beginnend mit der Hermite-Polynombasis. Anschließend wenden wir uns fortgeschrittenen Themen wie Anwendungen im Malliavin-Kalkül zu, einem unendlichdimensionalen Differential-Kalkül auf gaußschen Wahrscheinlichkeitsräumen (stochastische Variationsrechnung). Des Weiteren werden zentrale und nichtzentrale Grenzwertsätze für nichtlineare Funktionale von gaußschen und nicht-gaußschen Prozessen sowie Invarianzprinzipien behandelt.
Notwendige Vorkenntnisse bestehen nur aus Kenntnissen der Wahrscheinlichkeitstheorie I.
Für einige Vorträge sind Vorkenntnisse der Wahrscheinlichkeitstheorie II (Stochastische Prozesse) nützlich. Ihre individuellen Vorkenntnisse können bei der Vergabe der Themen jedoch selbstverständlich berücksichtigt werden.
Wahlpflichtmodul Mathematik
Mathematisches Seminar