Vorlesung: Di, Do, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Die Vorlesung wird voraussichtlich auf Englisch gehalten.
Die Anforderungen an Studien- und Prüfungsleistungen werden in den aktuellen Ergänzungen der Modulhandbücher beschrieben, die ab Ende Oktober 2025 als Teil des Kommentierten Vorlesungsverzeichnisses veröffentlicht werden.
Dozent:in: Amador Martín Pizarro
Assistenz: Charlotte Bartnick
Sprache: auf Englisch
In this course the basics of geometric model theory will be discussed and concepts such as quantifier elimination and categoricity will be introduced. A theory has quantifier elimination if every formula is equivalent to a quantifier-free formula. For the theory of algebraically closed fields of fixed characteristic, this is equivalent to requiring that the projection of a Zariski-constructible set is again Zariski-constructible. A theory is called \(\aleph_1\)-categorical if all the models of cardinality \(\aleph_1\) are isomorphic. A typical example is the theory of non-trivial \(\mathbb Q\)-vector spaces. The goal of the course is to understand the theorems of Baldwin-Lachlan and of Morley to characterize \(\aleph_1\)-categorical theories.
notwendig: Mathematische Logik \
nützlich: Algebra und Zahlentheorie
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Reine Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)
Machine Learning and Mathematical Logic
Vorlesung: Do, 14-16 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Die Anforderungen an Studien- und Prüfungsleistungen werden in den aktuellen Ergänzungen der Modulhandbücher beschrieben, die ab Ende Oktober 2025 als Teil des Kommentierten Vorlesungsverzeichnisses veröffentlicht werden.
Dozent:in: Maxwell Levine
Sprache: auf Englisch
Developments in artificial intelligence have boomed in recent years, holding the potential to reshape not just our daily routines but also society at large. Many bold claims have been made regarding the power and reach of AI. From a mathematical perspective, one is led to ask: What are its limitations? To what extent does our knowledge of reasoning systems in general apply to AI?
This course is intended to provide some applications of mathematical logic to the field of machine learning, a field within artificial intelligence. The goal of the course is to present a breadth of approachable examples.
The course will include a gentle introduction to machine learning in a somewhat abstract setting, including the notions of PAC learning and VC dimension. Connections to set theory and computability theory will be explored through statements in machine learning that are provably undecidable. We will also study some applications of model theory to machine learning.
The literature indicated in the announcement is representative but tentative. A continuously written PDF of course notes will be the main resource for students.
Background in basic mathematical logic is strongly recommended. Students should be familiar with the following notions: ordinals, cardinals, transfinite induction, the axioms of ZFC, the notion of a computable function, computable and computably enumerable sets (a.k.a. recursive and recursively enumerable sets), the notions of languages and theories and structures as understood in model theory, atomic diagrams, elementarity, and types. The concepts will be reviewed briefly in the lectures. Students are not expected to be familiar with the notion of forcing in set theory.
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Ergänzung (MEd18)
Reine Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective in Data (MScData24)
Seminar: Di, 16-18 Uhr, SR 127, Ernst-Zermelo-Str. 1
Voranmeldung: keine, kommen Sie zur Vorbesprechung!
Vorbesprechung 23.07., 12:15, Fakultätssitzungsraum 427, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
In HISinOne keine Belegung, aber Prüfungsanmeldung bis 8.10.2025.
Dozent:in: Heike Mildenberger
Assistenz: Stefan Ludwig
Sprache: auf Deutsch
Themen sind: Endliche und unendliche Graphen, Eulerpfade, Verbundenheitseigenschaften, Färbungen, Spannbäume, Zufallsgraphen. Wenn gewünscht, können auch fortgeschrittenere Gegenstände, wie zum Beispiel der Rado-Graph und 0-1-Gesetze oder probabilistische Methoden vorgestellt werden.
Lineare Algebra I und II, Analysis I und II
Proseminar (2HfB21, BSc21, MEH21, MEB21)
Vorlesung: Di, Do, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Klausur 28.07., 14:00-17:00, SR 318, Ernst-Zermelo-Str. 1
Nachklausur 09.12., 14:30-17:30, SR 318, Ernst-Zermelo-Str. 1
Dozent:in: Amador Martín Pizarro
Assistenz: Stefan Ludwig
Sprache: auf Deutsch
Dieser einführende Kurs in die mathematische Logik besteht aus mehreren Teilen. Es werden die Grundlagen der Prädikatenlogik und eine kurze Einleitung in die Modelltheorie sowie das Axiomensystem der Mengenlehre behandelt. Das Ziel der Vorlesung ist es, den rekursionstheoretischen Gehalt des Prädikatenkalküls, insbesondere die sogenannte Peano-Arithmetik und die Gödelschen Unvollständigkeitssätze, zu verstehen.
Grundlegende Mathematikkenntnisse aus Erstsemestervorlesungen
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Vertiefung (MEd18, MEH21)
Reine Mathematik (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)
Seminar: Di, 16-18 Uhr, SR 403, Ernst-Zermelo-Str. 1
Vorbesprechung 29.01., 13:15, Raum 313, Ernst-Zermelo-Str. 1
Vortragsbesprechungen (Tutorium zum Seminar): Termine nach Vereinbarung
Dozent:in: Heike Mildenberger
Assistenz: Maxwell Levine
Sprache: Vortrag/Teilnahme auf Deutsch oder Englisch möglich
Das Auswahlaxiom gehört zu den akzeptierten unbeweisbaren Grundannahmen. Es sagt, dass jede Menge \(M\) nicht leerer Mengen eine Auswahlfunktion hat, das ist eine Funktion \(f : M \to \bigcup M\) mit der Eigenschaft \(\forall x \in M\), \(f(x) \in x\). Auf der Basis der anderen Axiome ZF von Zermelo und Fraenkel gibt es zahlreiche zum Auswahlaxiom äquivalente Aussagen, zum Beispiel die Wohlordenbarkeit jeder Menge und das Lemma von Zorn. Wir studieren in diesem Seminar Modelle der Axiome ZF, in denen das Auswahlaxiom explizit negiert wird. Am Anfang stehen Modelle zum Beweis des folgenden Satzen von Cohen aus dem Jahre 1963: Wenn ZF konsistent ist, so auch ZF und das Negat von AC. Ein Jahr später zeigte Solovay: Es gibt ZF-Modelle, in denen jede Teilmenge der reellen Zahlen Lebesgue-messbar ist, es also keine Vitali-Menge gibt. Zwanzig Jahre später fand man: Eine stark unerreichbare Kardinalzahl ist zur Konstruktion eines solchen Modells unerlässlich. Zahlreiche Fragen nach Abstufungen und besonderen Formen der Negation des Auswahlaxioms sind offen.
Mengenlehre
Wahlmodul im Optionsbereich (2HfB21)
Mathematisches Seminar (BSc21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Ergänzung (MEd18)
Mathematisches Seminar (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)
Set Theory – Independence Proofs (Mengenlehre – Unabhängigkeitsbeweise)
Vorlesung: Di, Do, 12-14 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Dozent:in: Maxwell Levine
Assistenz: Hannes Jakob
Sprache: auf Englisch
How does one prove that something cannot be proved? More precisely, how does one prove that a particular statement does not follow from a particular collection of axioms?
These questions are often asked with respect to the axioms most commonly used by mathematicians: the axioms of Zermelo-Fraenkel set theory, or ZFC for short. In this course, we will develop the conceptual tools needed to understand independence proofs with respect to ZFC. On the way we will develop the theory of ordinal and cardinal numbers, the basics of inner model theory, and the method of forcing. In particular, we will show that Cantor's continuum hypothesis, the statement that \(2^{\aleph_0}=\aleph_1\), is independent of ZFC.
Notwendig: Mathematische Logik
Wahlmodul im Optionsbereich (2HfB21)
Wahlpflichtmodul Mathematik (BSc21)
Mathematische Vertiefung (MEd18, MEH21)
Reine Mathematik (MSc14)
Mathematik (MSc14)
Vertiefungsmodul (MSc14)
Wahlmodul (MSc14)
Elective (MScData24)