Linear Algebra I
Lecture: Mo, Do, 8-10h, HS Rundbau, Albertstr. 21
Tutorial: 2 hours, various dates
Sir-in Exam: Date to be announced
Teacher: Sebastian Goette
Assistant: Mikhail Tëmkin
Language: in German
Linear Algebra I is one of the two introductory lectures in the mathematics degree program that form the basis for further courses. Topics covered include: fundamental concepts (in particular fundamental concepts of set theory and equivalence relations), groups, fields, vector spaces over arbitrary fields, basis and dimension, linear mappings and transformation matrix, matrix calculus, linear systems of equations, Gaussian elimination, linear forms, dual space, quotient vector spaces and homomorphism theorem, determinant, eigenvalues, polynomials, characteristic polynomial, diagonalizability, affine spaces. The background to the mathematical content is explained in terms of ideas and the history of mathematics.
Required: High school mathematics. \ Attendance of the preliminary course (for students in mathematics) is recommended.
Linear Algebra (2HfB21, BSc21, MEH21)
Linear Algebra (MEB21)
Linear Algebra I (BScInfo19, BScPhys20)
Lecture: Mo, 14-16h, SR 404, Ernst-Zermelo-Str. 1
Tutorial: 2 hours, date to be determined
Teacher: Mikhail Tëmkin
Language: in English
The notion of a manifold is fundamental importance. On one hand, it is a common ground for many branches of pure and applied mathematics, as well as mathematical physics. On the other hand, it itself is a lush source of elegant, unexpected and structural results. Next, algebraic topology is to mathematics what the periodic table is to chemistry: it offers order to what seems to be chaotic (more precisely, to topological spaces of which manifolds is an important example). Finally, differential topology studies smooth manifolds using topological tools. As it turns out, narrowing the scope to manifolds provides many new beautiful methods, structure and strong results, that are applicable elsewhere -- as we will see in the course. Necessary notions from algebraic topology will be covered in the beginning.
Point-set topology (e.g. "Topology" from summer semester of 2024)
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Pure Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective (MScData24)
Lecture: Mo, Mi, 14-16h, HS II, Albertstr. 23b
Tutorial: 2 hours, date to be determined
Teacher: Sebastian Goette
Assistant: Mikhail Tëmkin
Language: in German
Differential geometry, especially Riemannian geometry, deals with the geometric properties of curved spaces. Such spaces also occur in other areas of mathematics and physics, for example in geometric analysis, theoretical mechanics and the general theory of relativity.
Required: Analysis~I–III, Lineare Algebra~I and II \ Recommended: Analysis of Curves and Surfaces ("Kurven und Flächen"), Topology
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Mathematical Concentration (MEd18, MEH21)
Pure Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective (MScData24)
Seminar: Di, 14-16h, SR 125, Ernst-Zermelo-Str. 1
Preliminary Meeting 16.07., SR 125, Ernst-Zermelo-Str. 1
Preparation meetings for talks: Dates by arrangement
Teacher: Sebastian Goette
Assistant: Mikhail Tëmkin
Language: Talk/participation possible in German and English
We will discuss advanced topics in algebraic topology. Depending on the interest of the participants we could work on one of the following topics---if you have other topic suggestions, please contact the lecturer.
Algebraic Topology~I and II
Elective (Option Area) (2HfB21)
Mathematical Seminar (BSc21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Mathematical Seminar (MSc14)
Elective (MSc14)
Elective (MScData24)