Complex Analysis
Lecture: Di, Do, 8-10h, HS II, Albertstr. 23b
Tutorial: 2 hours, date to be determined
Teacher: Stefan Kebekus
Language: in German
Complex analysis deals with functions \(f : \mathbb C \to \mathbb C\) , which map complex numbers to complex numbers. Many concepts of Analysis~I can be directly transferred to this case, e.\,g. the definition of differentiability. One might expect that this would lead to a theory analogous to Analysis~I but much more is true: in many respects you get a more elegant and simpler theory. For example, complex differentiability on an open set implies that a function is even infinitely often differentiable, and this is further consistent with analyticity. For real functions, all these notions are different. However, some new ideas are also necessary: For real numbers \(a\), \(b\) one integrates for \[\int_a^b f(x) \mathrm dx\] over the elements of the interval \([a, b]\) or \([b, a]\). However, if \(a\), \(b\) are complex numbers, it is no longer so clear clear how such an integral is to be calculated. One could, for example, in the complex numbers along the line that connects \(a, b \in \mathbb C\), or along another curve that leads from \(a\) to \(b\). Does this lead to a well-defined integral term or does such a curve integral depend on the choice of the curve?
Required: Analysis I+II, Linear Algebra I
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Mathematical Concentration (MEd18, MEH21)
Pure Mathematics (MSc14)
Elective (MSc14)
Elective (MScData24)
Linear Algebra II
Lecture: Di, Do, 8-10h, HS Rundbau, Albertstr. 21
Tutorial: 2 hours, various dates
Teacher: Stefan Kebekus
Assistant: Christoph Brackenhofer
Language: in German
Linear algebra II is the continuation of the lecture linear algebra I from the winter semester and one of the basic courses of math studies. Central topics are: Jordan’s normal form of endomorphisms, symmetrical bilinear forms with especially the Sylvester’s theorem, Euclidian and Hermitian vector spaces, skalar products, orthonormal bases, orthogonal and (self-) adjugated , spectral theorem, principal axis theorem.
Linear Algebra I
Linear Algebra (2HfB21, BSc21, MEH21)
Linear Algebra (MEB21)
Linear Algebra II (BScInfo19, BScPhys20)
Linear Algebra I
Lecture: Mo, Do, 8-10h, HS Rundbau, Albertstr. 21
Tutorial: 2 hours, various dates
27.02., 09:00-12:00, HS Rundbau, Albertstr. 21, GHS Physik, Hermann-Herder-Str. 3a, GHS Biologie, Schänzlestr. 1
Sit-in exam (resit) 26.04., 09:00-13:00, HS Rundbau, Albertstr. 21
Teacher: Stefan Kebekus
Assistant: Marius Amann
Language: in German
Linear Algebra I is one of the two introductory lectures in the mathematics degree program that form the basis for further courses. Topics covered include: fundamental concepts (in particular fundamental concepts of set theory and equivalence relations), groups, fields, vector spaces over arbitrary fields, basis and dimension, linear mappings and transformation matrix, matrix calculus, linear systems of equations, Gaussian elimination, linear forms, dual space, quotient vector spaces and homomorphism theorem, determinant, eigenvalues, polynomials, characteristic polynomial, diagonalizability, affine spaces. The background to the mathematical content is explained in terms of ideas and the history of mathematics.
Required: High school mathematics. \ Attendance of the preliminary course (for students in mathematics) is recommended.
Linear Algebra (2HfB21, BSc21, MEH21)
Linear Algebra (MEB21)
Linear Algebra I (BScInfo19, BScPhys20)
Algebra und Zahlentheorie
Lecture: Mo, Mi, 8-10h, HS Weismann-Haus, Albertstr. 21a
26.02., 09:00-11:30
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
general: ,
Algebra and Number Theory (2HfB21, MEH21)
Compulsory Elective in Mathematics (BSc21)
Pure Mathematics (MSc14)
Introduction to Algebra and Number Theory (MEB21)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Kommutative Algebra und Einführung in die algebraische Geometrie
Lecture: Di, Do, 8-10h, HS II, Albertstr. 23b
01.08., 11:00-13:30
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
general:
Mathematical Concentration (MEd18, MEH21)
Compulsory Elective in Mathematics (BSc21)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, HS II, Albertstr. 23b
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Lecture: Mi, Fr, 8-10h, HS II, Albertstr. 23b
Teacher: Stefan Kebekus
Assistant: Pedro Núñez
general:
Compulsory Elective in Mathematics (BSc21)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, HS II, Albertstr. 23b
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Lecture: Fr, Mi, 8-10h, HS II, Albertstr. 23b
26.09., 13:30-16:00
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
general:
Mathematical Concentration (MEd18, MEH21)
Compulsory Elective in Mathematics (BSc21)
Pure Mathematics (MSc14)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, HS II, Albertstr. 23b
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Seminar des Graduiertenkollegs 1821
Mi, 14-16h, SR 226, Hermann-Herder-Str. 10
Teacher: Sebastian Goette, Nadine Große, Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Assistant: Vivien Vogelmann
Lecture: Mi, Fr, 8-10h, SR 125, Ernst-Zermelo-Str. 1
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
general:
Compulsory Elective in Mathematics (BSc21)
Seminar des Graduiertenkollegs 1821
Mi, 14-16h, HS II, Albertstr. 23b
Teacher: Sebastian Goette, Nadine Große, Annette Huber-Klawitter, Stefan Kebekus
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Annette Huber-Klawitter, Stefan Kebekus
Kommutative Algebra und Einführung in die algebraische Geometrie
Lecture: Di, Do, 10-12h, , online
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
general:
Mathematical Concentration (MEd18, MEH21)
Compulsory Elective in Mathematics (BSc21)
Seminar: Kommutative Algebra und Algebraische Geometrie
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, bbb-Raum "Anderssen", online
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Seminar des Graduiertenkollegs 1821
Mi Do, 14-16h, bbb-Raum des Graduiertenkollegs, online
Teacher: Andriy Haydys, Annette Huber-Klawitter, Fritz Hörmann, Stefan Kebekus, Sebastian Goette, Nadine Große, Wolfgang Soergel, Katrin Wendland
Assistant: Jonas Schnitzer
Algebra und Zahlentheorie
Lecture: Di, 14-16h, -, -, Mi, 8-10h, -, -
03.03., 09:00-12:00
Sit-in exam (resit) 05.05., 09:00-13:00
Teacher: Stefan Kebekus
Assistant: Lukas Braun, Andreas Demleitner, Jonas Schnitzer
Pure Mathematics (MSc14)
Proseminar: Erzeugende Funktionen
Di, 10-12h, HS II, Albertstr. 23b
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
Undergraduate Seminar (2HfB21, BSc21, MEH21, MEB21)
Seminar des Graduiertenkollegs 1821
Mi 14-16h, SR 125, Ernst-Zermelo-Str. 1, Do, 14-16h, bbb-Raum "Krush", online
Teacher: Nadine Große, Andriy Haydys, Annette Huber-Klawitter, Wolfgang Soergel, Stefan Kebekus, Katrin Wendland
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, , online
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Internationales Forschungsseminar Algebraische Geometrie (IRMA) (Freiburg – Nancy – Strasbourg)
Teacher: Stefan Kebekus
Lineare Algebra II
Lecture: Di, Do, 8-10h, HS Rundbau, Albertstr. 21
Teacher: Stefan Kebekus
Assistant: Lukas Braun, Andreas Demleitner, Martin Jesenko, Jakob Rotter
Linear Algebra II (BScInfo19, BScPhys20)
Seminar: Knotentheorie
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
Compulsory Elective in Mathematics (BSc21)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Stefan Kebekus, Wolfgang Soergel
Seminar des Graduiertenkollegs 1821
Mi, 14-16h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Sebastian Goette, Nadine Große, Andriy Haydys, Stefan Kebekus, Wolfgang Soergel, Katrin Wendland
Internationales Forschungsseminar Algebraische Geometrie (IRMA) (Freiburg – Nancy – Strasbourg)
Teacher: Stefan Kebekus
Lecture: Mo, Do, 8-10h, HS Rundbau, Albertstr. 21
02.03., 12:00-17:00
Sit-in exam (resit) 21.07., 10:00-14:00
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
general: ,
Linear Algebra I (BScInfo19, BScPhys20)
Proseminar: p-adische Zahlen
Mo, 10-12h, SR 125, Ernst-Zermelo-Str. 1
Teacher: Stefan Kebekus
Assistant: Andreas Demleitner
Undergraduate Seminar (2HfB21, BSc21, MEH21, MEB21)
Seminar des Graduiertenkollegs 1821
Mi, 14-16h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Sebastian Goette, Nadine Große, Andriy Haydys, Annette Huber-Klawitter, Wolfgang Soergel, Katrin Wendland, Stefan Kebekus
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Internationales Forschungsseminar Algebraische Geometrie (IRMA) (Freiburg – Nancy – Strasbourg)
Teacher: Stefan Kebekus
Internationales Forschungsseminar Algebraische Geometrie (IRMA) (Freiburg – Nancy – Strasbourg)
Teacher: Stefan Kebekus
Algebra und Zahlentheorie
Lecture: Mi, Mo, 8-10h, HS Weismann-Haus, Albertstr. 21a
01.02., 13:00-16:00
Sit-in exam (resit) 29.07., 09:00-12:00
Teacher: Stefan Kebekus
Assistant: Johan Commelin
general: , ,
Algebra and Number Theory (2HfB21, MEH21)
Compulsory Elective in Mathematics (BSc21)
Pure Mathematics (MSc14)
Proseminar: Topologie
Mo, 10-12h, SR 125, Ernst-Zermelo-Str. 1
Teacher: Stefan Kebekus
Assistant: Santosh Kandel
Undergraduate Seminar (2HfB21, BSc21, MEH21, MEB21)
Seminar: Algebraische Geometrie
Mi, 10-12h, SR 403, Ernst-Zermelo-Str. 1
Teacher: Stefan Kebekus
Assistant: Johan Commelin
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Oberseminar: Algebra, Zahlentheorie und algebraische Geometrie
Fr, 10-12h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel
Seminar des Graduiertenkollegs 1821
Mi, 14-16h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Sebastian Goette, Nadine Große, Annette Huber-Klawitter, Stefan Kebekus, Wolfgang Soergel, Katrin Wendland, Andriy Haydys, Fritz Hörmann
Internationales Forschungsseminar Algebraische Geometrie (IRMA) (Freiburg – Nancy – Strasbourg)
Teacher: Stefan Kebekus