Content
Lévy processes are the continuous-time analogues of random walks in discrete time as they possess, by definition, independent and stationary increments.
They form a fundamental class of stochastic processes which has widespread applications in financial and insurance mathematics, queuing theory, physics and telecommunication. The Brownian motion and the Poisson process, which may already be known from other lectures, also belong to this class. Despite their richness and flexibility, Lévy processes are usually analytically and numerically very tractable because their distributions are generated by a single univariate distribution which has the property of infinite divisibility.
The lecture starts with an introduction into infinitely divisible distributions and the derivation of the famous Lévy-Khintchine formula. Then it will be explained how the Lévy processes emerge from these distributions and how the characteristics of the latter influence the path properties of the corresponding processes. Finally, after a short look at the method of subordination, option pricing in Lévy-driven financial models will be discussed.
Previous
knowledge
necessary: Probability Theory I
useful: Probability Theory II (Stochastic Processes)
Usability
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)