Mathematical Statistics
Lecture: Di, Do, 14-16h, SR 404, Ernst-Zermelo-Str. 1
Tutorial: 2 hours, date to be determined
Teacher: Ernst August v. Hammerstein
Language: in English
The lecture builds on basic knowledge about Probability Theory. The fundamental problem of statistics is to infer from a sample of observations as precise as possible statements about the data-generating process or the underlying distributions of the data. For this purpose, the most important methods from statistical decision theory such as test and estimation methods are introduced in the lecture.
Key words hereto include Bayes estimators and tests, Neyman-Pearson test theory, maximum likelihood estimators, UMVU estimators, exponential families, linear models. Other topics include ordering principles for reducing the complexity of models (sufficiency and invariance).
Statistical methods and procedures are used not only in the natural sciences and medicine, but in almost all areas in which data is collected and analyzed This includes, for example, economics (“econometrics”) and the social sciences (especially psychology). However, in the context of this lecture, we will focus less on applications, but---as the name suggests---more on the mathematical justification of the methods.
Required: Probability Theory (in particular measure theory and conditional probabilities/expectations)
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Probabilistic Machine Learning
Lecture: Di, Do, 12-14h, HS II, Albertstr. 23b
Tutorial: 2 hours, date to be determined
Teacher: Giuseppe Genovese
Assistant: Roger Bader
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Probability Theory II – Stochastic Processes
Lecture: Mo, Mi, 14-16h, HS II, Albertstr. 23b
Tutorial: 2 hours, date to be determined
Teacher: Angelika Rohde
Language: in English
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Futures and Options
Teacher: Eva Lütkebohmert-Holtz
Language: in English
This course covers an introduction to financial markets and products. Besides futures and standard put and call options of European and American type we also discuss interest-rate sensitive instruments such as swaps.
For the valuation of financial derivatives we first introduce financial models in discrete time as the Cox--Ross--Rubinstein model and explain basic principles of risk-neutral valuation. Finally, we will discuss the famous Black--Scholes model which represents a continuous time model for option pricing.
Required: Elementary Probability Theory~I
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Machine Learning and Mathematical Logic
Lecture: Do, 14-16h, SR 226, Hermann-Herder-Str. 10
Tutorial: 2 hours, date to be determined
Teacher: Maxwell Levine
Language: in English
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Pure Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Markov Chains
Lecture: Mi, 10-12h, SR 226, Hermann-Herder-Str. 10
Tutorial: 2 hours, date to be determined
Teacher: David Criens
Language: in English
The class of Markov chains is an important class of (discrete-time) stochastic processes that are used frequently to model for example the spread of infections, queuing systems or switches of economic scenarios. Their main characteristic is the Markov property, which roughly means that the future depends on the past only through the current state. In this lecture we provide the mathematical foundation of the theory of Markov chains. In particular, we learn about path properties, such as recurrence and transience, state classifications and discuss convergence to the equilibrium. We also study extensions to continuous time. On the way we discuss applications to biology, queuing systems and resource management. If the time allows, we also take a look at Markov chains with random transition probabilities, so-called random walks in random environment, which is a prominent model in the field of random media.
Required: Elementary Probability Theory~I \ Recommended: Analysis~III, Probability Theory~I
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Seminar
Seminar: Mo, 16-18h, SR 127, Ernst-Zermelo-Str. 1
Teacher: Angelika Rohde
Elective (Option Area) (2HfB21)
Mathematical Seminar (BSc21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Mathematical Seminar (MSc14)
Elective (MSc14)
Mathematical Seminar (MScData24)
Elective in Data (MScData24)
Lecture: Di, Do, 10-12h, HS Weismann-Haus, Albertstr. 21a
Tutorial: 2 hours, date to be determined
22.09., 10:00-12:00
Sit-in exam (resit) 31.10.
Teacher: Angelika Rohde
Assistant: Johannes Brutsche
Language: in English
The problem of axiomatising probability theory was solved by Kolmogorov in 1933: a probability is a measure of the set of all possible outcomes of a random experiment. From this starting point, the entire modern theory of probability develops with numerous references to current applications.
The lecture is a systematic introduction to this area based on measure theory and includes, among other things, the central limit theorem in the Lindeberg-Feller version, conditional expectations and regular versions, martingales and martingale convergence theorems, the strong law of large numbers and the ergodic theorem as well as Brownian motion.
necessary: Analysis I+II, Linear Algebra I, Elementary Probability Theory I
useful: Analysis III
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Mathematical Concentration (MEd18, MEH21)
Applied Mathematics (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Lecture: Mi, 14-16h, HS II, Albertstr. 23b, Do, 10-12h, SR 404, Ernst-Zermelo-Str. 1
Tutorial: 2 hours, date to be determined
Teacher: David Criens
Assistant: Samuel Adeosun
Language: in English
This lecture builds the foundation of one of the key areas of probability theory: stochastic analysis. We start with a rigorous construction of the It^o integral that integrates against a Brownian motion (or, more generally, a continuous local martingale). In this connection, we learn about It^o's celebrated formula, Girsanov’s theorem, representation theorems for continuous local martingales and about the exciting theory of local times. Then, we discuss the relation of Brownian motion and Dirichlet problems. In the final part of the lecture, we study stochastic differential equations, which provide a rich class of stochastic models that are of interest in many areas of applied probability theory, such as mathematical finance, physics or biology. We discuss the main existence and uniqueness results, the connection to the martingale problem of Stroock-Varadhan and the important Yamada-Watanabe theory.
Probability Theory I and II (Stochastic Processes)
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Lecture: Mo, 14-16h, HS II, Albertstr. 23b
Exercise session: Mi, 16-18h, SR 403, Ernst-Zermelo-Str. 1
Teacher: Ernst August v. Hammerstein
Assistant: Sebastian Hahn
Language: in English
Lévy processes are the continuous-time analogues of random walks in discrete time as they possess, by definition, independent and stationary increments. They form a fundamental class of stochastic processes which has widespread applications in financial and insurance mathematics, queuing theory, physics and telecommunication. The Brownian motion and the Poisson process, which may already be known from other lectures, also belong to this class. Despite their richness and flexibility, Lévy processes are usually analytically and numerically very tractable because their distributions are generated by a single univariate distribution which has the property of infinite divisibility.
The lecture starts with an introduction into infinitely divisible distributions and the derivation of the famous Lévy-Khintchine formula. Then it will be explained how the Lévy processes emerge from these distributions and how the characteristics of the latter influence the path properties of the corresponding processes. Finally, after a short look at the method of subordination, option pricing in Lévy-driven financial models will be discussed.
necessary: Probability Theory I
useful: Probability Theory II (Stochastic Processes)
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Lecture: Mi, 12-14h, HS II, Albertstr. 23b
Tutorial: 2 hours, date to be determined
Teacher: Thorsten Schmidt
Assistant: Simone Pavarana
Language: in English
In this lecture we will study new and highly efficient tools from machine learning which are applied to stochastic problems. This includes neural SDEs as a generalisation of stochastic differential equations relying on neural networks, transformers as a versatile tool not only for languages but also for time series, transformers and GANs as generator of time series and a variety of applications in Finance and insurance such as (robust) deep hedging, signature methods and the application of reinforcement learning.
The prerequisites are stochastics, for some parts we will require a good understanding of stochastic processes. A (very) short introduction will be given in the lectures – so for fast learners it would be possible to follow the lectures even without the courses on stochastic processes.
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Do, 14-16h, PC-Pool Raum -100, Hermann-Herder-Str. 10
Teacher: Carola Heinzel
Assistant: Samuel Adeosun
Language: in English
This course introduces the foundational concepts and practical skills necessary for understanding and implementing machine learning models, with a particular focus on deep learning and neural networks. Students will progress from basic programming skills in Python , with a focus on the PyTorch library, to advanced topics such as training multi-layer perceptrons, optimization techniques, and transformer architectures. By the end of the course, participants will have the ability to implement and analyze neural networks, apply optimization strategies, and understand modern transformer-based models for tasks such as text generation and time series analysis.
Basic knowledge in programming and basic knowledge in stochastics.
Computer Exercise (2HfB21, MEH21, MEB21)
Elective (Option Area) (2HfB21)
Supplementary Module in Mathematics (MEd18)
Elective (MSc14)
Elective (MScData24)
Undergraduate seminar: Counter-Examples in Probability Theory
Teacher: David Criens
Assistant: Andreas Demleitner
It is not only theorems, proofs or illustrative examples, but also counterexamples that show the depth and beauty of a theory. Natural questions are: (a) are the requirements of a theorem necessary and not only sufficient; (b) are the requirements sufficient and not just necessary; (c) is an implication an equivalence, i.e. does the implication in the other direction also hold.
In this undergraduate seminar we deal with counter-examples from probability theory. Possible topics range from classic questions such as measurability, independence of random variables, expectations or conditional probabilities, to more advanced topics such as limit value rates, martingals or Markov processes. A suitable topic can be found for any interested student.
Elementary Probability Theory I (topics from probability theory I–III can also be assigned)
Undergraduate Seminar (2HfB21, BSc21, MEH21, MEB21)
Seminar: The Wiener Chaos Decomposition and (Non-)Central Limit Theorems
Teacher: Angelika Rohde
Assistant: Gabriele Bellerino
Language: Talk/participation possible in German and English
Elective (Option Area) (2HfB21)
Mathematical Seminar (BSc21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Mathematical Seminar (MSc14)
Elective (MSc14)
Mathematical Seminar (MScData24)
Elective in Data (MScData24)
Lecture: Mo, Mi, 14-16h, SR 404, Ernst-Zermelo-Str. 1
Teacher: Ernst August v. Hammerstein
Assistant: Sebastian Stroppel
Language: in English
The lecture builds on basic knowledge about Probability Theory. The fundamental problem of statistics is to infer from a sample of observations as precise as possible statements about the data-generating process or the underlying distributions of the data. For this purpose, the most important methods from statistical decision theory such as test and estimation methods are introduced in the lecture. \\ Key words hereto include Bayes estimators and tests, Neyman-Pearson test theory, maximum likelihood estimators, UMVU estimators, exponential families, linear models. Other topics include ordering principles for reducing the complexity of models (sufficiency and invariance). Statistical methods and procedures are used not only in the natural sciences and medicine, but in almost all areas in which data is collected and analyzed This includes, for example, economics (“econometrics”) and the social sciences (especially psychology). However, in the context of this lecture, we will focus less on applications, but---as the name suggests---more on the mathematical justification of the methods.
Required: Probability Theory (in particular measure theory and conditional probabilities/expectations)
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Questions sesssion / flipped classroom: Mo, 10-12h, HS II, Albertstr. 23b
Letcure (4 hours): asynchronous videos
Teacher: Peter Pfaffelhuber
Assistant: Samuel Adeosun
Language: in English
A stochastic process \((X_t)_{t\in I}\) is nothing more than a family of random variables, where \(I\) is some index set modeling time. Simple examples are random walks, Markov chains, Brownian motion and derived processes. The latter play a particularly important role in the modeling of financial mathematics or questions from the sciences. We will first deal with martingales, which describe fair games. After constructing the Poisson process and Brownian motion, we will focus on properties of Brownian motion. Infinitesimal characteristics of a Markov process are described by generators, which allows a connection to the theory of partial differential equations. Finally, a generalization of the law of large numbers is discussed with the ergodic theorem for stationary stochastic processes. Furthermore, insights are given into a few areas of application, such as biomathematics or random graphs.
Required: Probability Theory I
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Lecture: Mo, Mi, 12-14h, SR 404, Ernst-Zermelo-Str. 1
Tutorial: 2 hours, date to be determined
Teacher: Thorsten Schmidt
Assistant: Moritz Ritter
Language: in English
This lecture marks the culmination of our series on probability theory, achieving the ultimate goal of this series: the combination of stochastic analysis and financial mathematics---a field that has yielded an amazing wealth of fascinating results since the 1990s. The core is certainly the application of semimartingale theory to financial markets culminating in the fundamental theorem of asset pricing. This results is used everywhere in financial markets for arbitrage-free pricing.
After this we look into modern forms of stochastic analysis covering neural SDEs, signature methods, uncertainty and term structure models. The lecture will conclude with an examination of the latest applications of machine learning in financial markets and the reciprocal influence of stochastic analysis on machine learning.
Required: Probability Theory II (Stochastic Processes)
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Advanced Lecture in Stochastics (MScData24)
Elective in Data (MScData24)
Lecture: Do, 12-14h, SR 226, Hermann-Herder-Str. 10
Tutorial: 2 hours, date to be determined
Teacher: David Criens
Assistant: Dario Kieffer
Language: in English
The class of Markov chains is an important class of (discrete-time) stochastic processes that are used frequently to model for example the spread of infections, queuing systems or switches of economic scenarios. Their main characteristic is the Markov property, which roughly means that the future depends on the past only through the current state. In this lecture we provide the mathematical foundation of the theory of Markov chains. In particular, we learn about path properties, such as recurrence and transience, state classifications and discuss convergence to the equilibrium. We also study extensions to continuous time. On the way we discuss applications to biology, queuing systems and resource management. If the time allows, we also take a look at Markov chains with random transition probabilities, so-called random walks in random environment, which is a prominent model in the field of random media.
Required: Elementary Probability Theory~I \ Recommended: Analysis~III, Probability Theory~I
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Lecture: Di, Fr, 12-14h, SR 226, Hermann-Herder-Str. 10
Tutorial: 2 hours, date to be determined
Computer exercise: 2 hours, date to be determined
Oral exam 06.12.
This course takes only place in the first half of the semester, until end of November.
Teacher: Diyora Salimova
Assistant: Ilkhom Mukhammadiev
Language: in English
The aim of this course is to enable the students to carry out simulations and their mathematical analysis for stochastic models originating from applications such as mathematical finance and physics. For this, the course teaches a decent knowledge on stochastic differential equations (SDEs) and their solutions. Furthermore, different numerical methods for SDEs, their underlying ideas, convergence properties, and implementation issues are studied.
Required: Probability and measure theory, basic numerical analysis and basics of MATLAB programming.
Elective (Option Area) (2HfB21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Applied Mathematics (MSc14)
Mathematics (MSc14)
Concentration Module (MSc14)
Elective (MSc14)
Elective in Data (MScData24)
Seminar: Fr, 10-12h, SR 125, Ernst-Zermelo-Str. 1
Preregistration:
Preliminary Meeting 18.10.
Preparation meetings for talks: Dates by arrangement
Teacher: Thorsten Schmidt
Assistant: Moritz Ritter
Language: Talk/participation possible in German and English
This seminar will focus on theoretical machine learning results, including modern universal approximation theorems, approximation of filtering methods through transformes, application of machine learning methods in financial markets and possibly other related topics. Moreover, we will cover topics in stochastic analysis, like fractional Ito calculus, uncertainty, filtering and optimal transport. You are also invited to suggest related topics.
Required: Basic Probability and either Machine Learning or Probability Theory II (Stochastic Processes).
Elective (Option Area) (2HfB21)
Mathematical Seminar (BSc21)
Compulsory Elective in Mathematics (BSc21)
Supplementary Module in Mathematics (MEd18)
Mathematical Seminar (MSc14)
Elective (MSc14)
Mathematical Seminar (MScData24)
Elective in Data (MScData24)