Programmdiskussion
Monday, 15.4.13, 16:15-17:15, Raum 404, Eckerstr. 1
The principle Diamond Star
Wednesday, 17.4.13, 16:30-17:30, Raum 404, Eckerstr. 1
Hamiltonian mechanics and holomorphic curves: a round trip
Thursday, 18.4.13, 17:00-18:00, Hörsaal II, Albertstr. 23b
Symplectic geometry has its origins in the Hamiltonian\nformulation of classical mechanics. Holomorphic curves are\nthe most important tools to study global properties of\nsymplectic manifolds. In my talk I will provide a return\nticket from holomorphic curves back to Hamiltonian\nmechanics. Translating certain geometric properties of\nholomorphic curves into algebra, I will show that we\nnaturally arrive at Hamiltonian mechanics on an\ninfinite-dimensional (singular) phase space. In the\nsimplest case, this leads to the famous integrable system\ndescribing waves in shallow water.
De Rham realizations of mixed motives over general base schemes
Friday, 19.4.13, 10:00-11:00, Raum 404, Eckerstr. 1
After briefly reviewing the construction of the stable homotopy category SH(X) of a scheme X and the associated formalism of Grothendieck's six functors, I explain how to construct de Rham realization functors from SH(X) into an ind-completion of the bounded derived category of holonomic DX-modules when X is a smooth, quasi-projective C-scheme. As a corollary, the classical Betti-de Rham comparison theorem furnishes a purely algebraic proof of the Riemann-Hilbert correspondence between the full subcategories of D^bc(X(C),C) and D^bhol(DX)$ spanned by the complexes ``of geometric origin''.\n\n
Closed currents and measured laminations
Monday, 22.4.13, 16:15-17:15, Raum 404, Eckerstr. 1
Attractors for the 2D Euler equations
Tuesday, 23.4.13, 14:15-15:15, Raum 226, Hermann-Herder-Str. 10
The problem of existence of global attractors\nfor the 2D Euler equations with inviscid dissipation is studied.\nIn particular, the critical role of the transport of the vorticity is \nemphasized,\nwith the choice of the relevant topologies, to have uniform estimates for\narbitrary positive times.
"Quantization for the Willmore functional" Teil 1
Tuesday, 23.4.13, 16:15-17:15, Raum 404, Eckerstr. 1
Pseudoräume
Wednesday, 24.4.13, 16:30-17:30, Raum 404, Eckerstr. 1
Geometrie und Dynamik diskreter Untergruppen von halbeinfachen Liegruppen - Dynamics and geometry of discrete subgroups or semi-simple Lie groups
Thursday, 25.4.13, 17:00-18:00, Hörsaal II, Albertstr. 23b
In diesem Vortrag werde ich einige geometrische und dynamische Eigenschaften von diskreten Untergruppen in halbeinfachen Liegruppen (z.B. SL(n,R)) diskutieren. Ich werde hierbei insbesondere Untergruppen betrachten, die im Zusammenhang mit höhere Teichmuellertheorie auftreten.\n\nI will discuss dynamical and geometric properties of discrete subgroups of Lie groups (e.g. SL(n,R)). A special focus will lie on subgroups which arise in connection with higher Teichmüller theory.
Gesellschaftsform und Überlebenswahrscheinlichkeit: Ein Verzweigungsprozessmodell.
Friday, 26.4.13, 11:30-12:30, Raum 404, Eckerstr. 1
Construction of Riemann surfaces with large systoles
Monday, 29.4.13, 16:15-17:15, Raum 404, Eckerstr. 1
"Quantization for the Willmore functional" Teil 2
Tuesday, 30.4.13, 16:15-17:15, Raum 404, Eckerstr. 1