tba
Tuesday, 27.4.21, 14:30-15:30, BBB-Raum Philidor
Open Core in dichten echten Paaren reell abgeschlossener Körper.
Wednesday, 28.4.21, 10:30-11:30, BBB-Raum Philidor
Paare reell beziehungsweise algebraisch abgeschlossener Körper haben einige interessante Eigenschaften. Wie bereits von Tarski, Robinson und Keisler gezeigt wurde, sind die Theorie echter Paare algebraisch abgeschlossener Körper sowie die Theorie echter dichter Paare reell abgeschlossener Körper vollständig und entscheidbar. Die genaue Struktur definierbarer Mengen und die geometrischen Eigenschaften dieser Theorien sind seitdem gut untersucht.\n\nIn dem Vortrag wird es darum gehen, in Anlehnung an eine Arbeit von Lou van den Dries zu zeigen, dass offene Mengen, welche in einem dichten Paar (K, E) reell abgeschlossener Körper definierbar sind, bereits im Redukt der Ringsprache definierbar sind. Hierfür werden wir eine detaillierte Beschreibung definierbarer Mengen in einer Variable geben: sie stimmen mit einer semialgebraischen Menge überein bis auf eine "kleinere" definierbare Menge, welche im Bildbereich der E-Punkte einer semialgebraischen Menge durch eine semialgebraische Funktion enthalten ist.\n\nAm Rande angerissen wird der Fall der algebraisch abgeschlossenen Körper behandelt, weil das Vorgehen analog, jedoch wesentlich leichter ist.\n
Open Core in dichten echten Paaren reell abgeschlossener Körper
Wednesday, 28.4.21, 10:30-11:30, BBB-Raum Philidor
Paare reell beziehungsweise algebraisch abgeschlossener Körper haben einige interessante Eigenschaften. Wie bereits von Tarski, Robinson und Keisler gezeigt wurde, sind die Theorie echter Paare algebraisch abgeschlossener Körper sowie die Theorie echter dichter Paare reell abgeschlossener Körper vollständig und entscheidbar. Die genaue Struktur definierbarer Mengen und die geometrischen Eigenschaften dieser Theorien sind seitdem gut untersucht.\n\nIn dem Vortrag wird es darum gehen, in Anlehnung an eine Arbeit von Lou van den Dries zu zeigen, dass offene Mengen, welche in einem dichten Paar (K, E) reell abgeschlossener Körper definierbar sind, bereits im Redukt der Ringsprache definierbar sind. Hierfür werden wir eine detaillierte Beschreibung definierbarer Mengen in einer Variable geben: sie stimmen mit einer semialgebraischen Menge überein bis auf eine "kleinere" definierbare Menge, welche im Bildbereich der E-Punkte einer semialgebraischen Menge durch eine semialgebraische Funktion enthalten ist.\n\nAm Rande angerissen wird der Fall der algebraisch abgeschlossenen Körper behandelt, weil das Vorgehen analog, jedoch wesentlich leichter ist.