Julia Wolf:
The structure of stable sets
Time and place
Wednesday, 19.12.18, 16:30-17:30, Raum 404, Ernst-Zermelo-Str. 1
Abstract
We shall begin by explaining the idea behind the so-called "arithmetic regularity lemma" pioneered by Green, which is a group-theoretic analogue of Szemerédi's celebrated regularity lemma for graphs with wide-ranging applications. We will then describe recent joint work with Caroline Terry (University of Chicago), which shows that under the natural model-theoretic assumption of stability the conclusions of the arithmetic regularity lemma can be significantly strengthened, leading to a characterisation of stable subsets of finite abelian groups. In the latter part of the talk, we survey related work by various authors including Alon, Conant, Fox, Pillay, Sanders, Sisask, Terry and Zhao, further exploring this topic from both a combinatorial and a model-theoretic perspective.