Dirac Bündel und Dirac Operatoren
Monday, 29.10.07, 16:15-17:15, Hörsaal II, Albertstr. 23b
Seiberg Witten Gleichungen in N-Dimensionen
Monday, 5.11.07, 16:15-17:15, Hörsaal II, Albertstr. 23b
Kähler-Geometrie I
Monday, 12.11.07, 16:00-17:00, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds"; Kap. 1.
Kähler-Geometrie II
Monday, 19.11.07, 16:00-17:00, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds"; Kap. 2.1-3.
Kähler-Geometrie III
Monday, 26.11.07, 16:00-17:00, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds"; Kap. 2.4.
Kähler-Geometrie IV
Monday, 3.12.07, 16:00-17:00, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds"; Kap. 3.
Kähler-Geometrie V
Monday, 10.12.07, 16:00-17:00, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds"; Kap. 4, Teil 1
Kähler-Geometrie VI
Monday, 17.12.07, 16:00-17:00, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds"; Kap. 4, Teil 2
Kähler-Geometrie VII
Monday, 7.1.08, 16:15-17:15, Hörsaal II, Albertstr. 23b
Spectral Invariants of Type ρ
Monday, 14.1.08, 16:00-17:00, Hörsaal II, Albertstr. 23b
Kähler Geometrie VIII
Monday, 21.1.08, 16:15-17:15, Hörsaal II, Albertstr. 23b
Kähler and Sasakian Einstein Reduced Metrics
Monday, 28.1.08, 16:15-17:15, Hörsaal II, Albertstr. 23b
We will study geometric properties of Sasakian and Kähler quotients. In the\npresence of Lie group symmetries, we construct a reduction procedure for symplectic\nand Kähler manifolds using the ray preimages of the momentum map J. More\nprecisely, instead of taking as in point reduction (Weinstein-Marsden reduce spaces,usually denoted Mμ), the preimage of a momentum value μ, we take the preimage of\nR+μ, the positive ray of μ. We have three reasons to develop this construction. One\nis geometric: the construction of canonical Kähler reduced spaces corresponding to\na non zero momentum. By canonical we mean that the reduced Kähler structure is\nthe projection of the initial Kähler structure. And the Weinstein-Marsden reduction\nis not always canonical for Kähler manifolds. The second reason is an application tothe study of conformal Hamiltonian systems. They are mechanical, non-autonomous\nsystems with friction whose integral curves preserve, in the case of symmetries, theray pre-images of the momentum map, and not the momentum preimages used\nin the Marsden-Weinstein quotient. Finally, the third reason consists of finding\nnecessary and sufficient conditions for the ray reduced spaces of Kähler (Sasakian)-Einstein manifolds to be also Kähler (Sasakian)-Einstein. During this talk we will\nmostly concentrate on these conditions which enable us to construct new Kähler\n(Sasakian)-Einstein manifolds.\n
Kähler Geometrie IX
Monday, 4.2.08, 16:15-17:15, Hörsaal II, Albertstr. 23b
Ballmann, W.: "Lectures on Kähler manifolds", Kap. 7
The prescribed Q-curvature problem on riemannian four-manifolds
Monday, 11.2.08, 16:15-17:15, Hörsaal II, Albertstr. 23b