Simon Pepin-Lehalleur, Universität Zürich:
Triangulated categories of 1-motivic sheaves
Time and place
Friday, 30.10.15, 10:15-11:15, Raum 404, Eckerstr. 1
Abstract
Thanks to the work of Voevodsky, Morel, Ayoub, Cisinski and Déglise, we have at our disposal a mature theory of triangulated categories of mixed motivic sheaves with rational coefficients over general base schemes, with a "six operations" formalism and the expected relationship with algebraic cycles and algebraic K-theory. A parallel development has taken place in the study of Voevodsky's category of mixed motives over a perfect field, where the subcategory of 1-motives (i.e., generated by motives of curves) has been completely described by work of Orgogozo, Barbieri-Viale, Kahn and Ayoub. We explain how to combine these two sets of ideas to study the triangulated category of 1-motivic sheaves over a base. Our main results are the definition of the motivic t-structure for 1-motivic sheaves, a precise relation with Deligne 1-motives, and the extraction of the "1-motivic part" of a general motivic sheaves via a "motivic Picard functor".