Resonances of closed geodesics on real projective space and extensions of loop products
Montag, 2.6.25, 16:15-17:45, Seminarraum 404
Properties of closed geodesics on a Riemannian manifolds are a classical topic of mathematical research. The closed geodesics can be described as the critical points of the energy functional on the free loop space of a manifold. Since string topology studies algebraic structures on the homology of free loop spaces, there is hope that string topology operations give new insights into closed geodesics. In this talk we show one can adapt a result by Hingston and Rademacher for closed geodesics on the sphere to real projective space. Since even-dimensional real projective space are not orientable the classical string topology operations are not defined and some extra care is required. We will show that the loop product and coproduct can be defined on the universal covering space of the free loop space of real projective space and these new operations can be understood as extensions of the loop product and coproduct on the sphere.
tba
Dienstag, 3.6.25, 14:15-15:15, Seminarraum 226, HH10
My internship at Bosch
Dienstag, 3.6.25, 15:00-16:30, SR 226 (HH10)
Bounding the area of submanifolds with prescribed boundary in terms of its curvature energy
Dienstag, 3.6.25, 16:15-17:45, Seminarraum 125
Given an (m-1)-dimensional, embedded, compact submanifold \(\Gamma\) in \(\mathbb{R}^n\), consider any compact, immersed m-dimensional submanifold whose boundary is exactly given by \(\Gamma\). In this talk, we show how the area of such an m-submanifold is controlled in terms of its curvature energy. The talk is based on joint work with Prof. Ernst Kuwert.
„Funktionen und Modellieren“ – Einblicke in die Entwicklung eines Inhaltsmoduls aus dem DZLM-Fortbildungsprogramm QuaMath
Dienstag, 3.6.25, 18:30-20:00, Hörsaal 2
Die Leitidee Funktionaler Zusammenhang spielt nicht nur in vielen Inhaltsbereichen des Mathematikunterrichts eine zentrale und durchgängige Rolle, sondern auch für das Modellieren in vielfältigen Anwendungskontexten. Meist wird dabei das Gelernte auf Situationskontexte übertragen, Anwendungsaufgaben können aber auch gezielt zum Aufbau funktionalen Denkens genutzt werden. Der Vortrag stellt das Modul Funktionen und Modellieren vor, in dem Lehrkräfte sich professionalisieren können, um Verstehensgrundlagen und Modellierungskompetenzen im Bereich des Funktionalen Denkens bei Lernenden aufzubauen, zu diagnostizieren und zu fördern. Neben der Vorstellung von Modulinhalten und Fortbildungsaktivitäten sollen auch erste Einblicke in die Begleitforschung zum Modul gegeben werden.
Sharp quantitative estimates of Struwe’s decomposition
Donnerstag, 5.6.25, 14:00-15:00, Seminarraum 125
Suppose \(u\in \dot{H}^1(\mathbb{R}^n)\). In a fundamental paper, Struwe proved that if \(u\geq 0\) and \(\|\Delta u+u^{\frac{n+2}{n-2}}\|_{H^{-1}}:=\Gamma(u)\to 0\) then \(dist(u,\mathcal{T})\to 0\), where \(dist(u,\mathcal{T})\) denotes the \(\dot{H}^1(\mathbb{R}^n)\)-distance of \(u\) from the manifold of sums of Talenti bubbles. In this talk, I will talk about a quantitative version of this Struwe’s decomposition. Precisely, we proved nonlinear quantitative estimates for dimension while Figalli-Glaudo proved a linear estimate for dimension . Furthermore, we showed that these estimates are sharp in the sense of the exponents are optimal. It is joint work with Liming Sun and Juncheng Wei.
Liouville type theorem for a class quasi-linear \(p\)-Laplace equation on the half space
Donnerstag, 5.6.25, 15:00-16:00, Seminarraum 125
In this talk, we will study the positive solutions of p-Laplacian with subcrtical exponent in the half space with the Neumann boundary condition. We deduce a Liouville Theorem via the method of vector field and integral by part motivated by Obata. This is a joint work with Xinan Ma and Yang Zhou.
On arithmetic properties of discrete Toda flows
Freitag, 6.6.25, 10:30-11:30, Seminarraum 404
We will explain a new linearization of the discrete periodic Toda flow (a well known discrete integrable system) in terms of Mumford's description (via quadratic forms and Gauß composition law) of Jacobians of hyperelliptic curves. A subtle integrality property appearing in this set-up opens the way to use p-adic methods for the study of the Toda flow. We will give an elementary talk explaining all the main actors and also point to some intriguing connections with number theory.
A braided monoidal 2-category via Soergel bimodules
Montag, 16.6.25, 14:15-15:15, Seminarraum 232
Braided monoidal categories are good sources for topological invariants. To get more refined invariants, or even a full TQFT, one might want to lift this a categorical level higher and construct a braided monoidal 2-category. The talk will start by reviewing some well-known facts with an important example of a braided monoidal category. Then I will try to explain why the construction of a braided monoidal 2-category, and even the definition of such an object, is not obvious. The second part of the talk will then indicate an actual construction using complexes of Soergel bimodules.
Regularity of the Dirac Operator on corner domains
Montag, 16.6.25, 16:15-17:45, Seminarraum 404
This talk addresses the Dirac operator on polygonal domains in \(\mathbb{R}^2\) with local boundary conditions. While the theory is well-developed for smooth boundaries, much less is known in the presence of corners. We establish symmetry and regularity of the Dirac operator under these generalized conditions. Initial progress toward proving self-adjointness will also be discussed, including an explicit description of the adjoint operator and its decomposition into regular and singular components at the corners. These results provide a foundation for further study of spectral and boundary value problems for Dirac operators on non-smooth domains. The results are based on my own research.
TBA
Dienstag, 17.6.25, 16:15-17:45, Seminarraum 125
Ramified periods and field of definition
Freitag, 20.6.25, 10:30-12:00, Seminarraum 404
In a joint work with Dragos Fratila and Alberto Vezzani, we construct hyperelliptic curves of large genus, defined over quadratic fields that are isomorphic to their Galois conjugates but do not descend to Q. The obstruction to descent is new and we call it “ramified periods”. These are p-adic numbers that arise from the comparison between de Rham cohomology and crystalline cohomology (hence the term periods). These numbers can reveal interesting information if p ramifies in the quadratic field.
t.b.a.
Montag, 23.6.25, 16:00-17:30, Seminarraum 404
Unterrichtsqualität verstehen: Die Entwicklung und der Einsatz kontrastierender Praxisrepräsentationen in der Lehrkräftebildung am Beispiel des Mathematikunterrichts
Dienstag, 24.6.25, 18:30-20:00, Hörsaal 2
Um die Unterrichtsqualität an Schulen zu verbessern, sollten (angehende) Lehrkräfte frühzeitig die Möglichkeit erhalten, Wissen über Unterrichtsqualitätsmerkmale zu erwerben. Da diese Merkmale oft schwer direkt zu beobachten sind, können gezielt entwickelte Praxisrepräsentationen dabei helfen, sie sichtbar zu machen. Im Vortrag wird daher ein systematischer Ansatz zur Entwicklung solcher Praxisrepräsentationen in Form von geskripteten Videos vorgestellt. Die Kombination von Erkenntnissen aus der Entwicklung von Videovignetten und der Variationstheorie ermöglicht es, typische Unterrichtspraktiken und deren Auswirkungen auf Unterrichtsqualitätsmerkmale praxisnah und kontrastierend darzustellen. Der Vortrag gibt einen Überblick über die Einsatzmöglichkeiten der entwickelten Unterrichtsvideos sowohl in der Lehrkräftebildung als auch in der Forschung, die Fragen zur Fachspezifität von Unterrichtsqualitätsratings untersucht.
What does a random complex curve look like locally?
Donnerstag, 26.6.25, 15:00-16:30, Hörsaal 2
A complex curve of degree d in the complex projective plane is the vanishing locus of a homogeneous polynomial of degree d. These curves are real surfaces satisfying a spectacular collective feature: generically they are all topologically the same, that is connected compact Riemann surfaces with genus equal to (d-1)(d-2)/2. Now, if we fix a ball and we look at the intersection of the curve with this ball, this magical property disappears completely. For instance, the curve can simply miss the ball. But if the polynomial is chosen at random and has a high degree, we can expect intuitively that the ball will capture, in average, a fixed proportion of the global topology of the curve. I will explain that this is the case.