7.10 Themen der algebraischen Geometrie

Vorlesung:  

Themen der algebraischen Geometrie

  

Dozent:  

Prof. Dr. Stefan Kebekus

  

Zeit/Ort:  

Di, Do, 8–10 Uhr, HS II, Albertstr. 23

  

Übungen:  

2-std. nach Vereinbarung

  

Tutorium:  

Dr. Emanuel Scheidegger

  

Web-Seite:  

http://home.mathematik.uni-freiburg.de/kebekus

  
 

Inhalt:
Die Vorlesung „Themen der algebraischen Geometrie“ richtet sich an fortgeschrittene Studenten des Master-, Diplom- und Lehramtsstudienganges, die an einer Abschlussarbeit in algebraischer Geometrie interessiert sind. Thema der Vorlesung wird die Geometrie von algebraischen Kurven und Flächen sein; die genaue Themenauswahl richtet sich nach den Vorkenntnissen und Interessen der Teilnehmer.

Die Teilnehmer sollten mindestens eine der grundlegenden Vorlesungen wie ’Algebraische Geometrie’, ’Kommutative Algebra’ oder ’Torische Geometrie’ gehört haben.

Literatur:

1.)
R. Hartshorne, Algebraic Geometry, GTM 52, Springer Verlag.
2.)
I. Shafarevich, Basic algebraic geometry. 1. Varieties in projective space. Second edition. Translated from the 1988 Russian edition and with notes by Miles Reid. Springer-Verlag, Berlin, 1994. xx+303 pp. ISBN: 3-540-54812-2
3.)
D. Mumford, The red book of varieties and schemes. Lecture Notes in Mathematics, 1358. Springer-Verlag, Berlin, 1988. vi+309 pp. ISBN: 3-540-50497-4
4.)
A. Beauville, Complex algebraic surfaces. Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid. Second edition. London Mathematical Society Student Texts, 34. Cambridge University Press, Cambridge, 1996. x+132 pp. ISBN: 0-521-49510-5; 0-521-49842-2, 14Jxx (14-02)
____________________________

Typisches Semester:  

ab 5. Semester

ECTS-Punkte:  

9 Punkte

Master-Studiengang:  

geeignet für das Modul Reine Mathematik

Notwendige Vorkenntnisse:  

Siehe Text

Sprechstunde Dozent:  

Di, 10–11 Uhr, Zi. 432, Eckerstr. 1

Sprechstunde Assistent:  

Wird in der Vorlesung bekannt gegeben.