12.5 Countable Borel Equivalence Relations

Seminar:  

Countable Borel Equivalence Relations

  

Dozent:  

Jeffrey Burdges

  

Zeit/Ort:  

Do 9–11 Uhr, SR 318, Eckerstr. 1

  

Tutorium:  

Juan Diego Caycedo

  

Vorbesprechung:  

in der 1. Vorlesungswoche

  

Web-Seite:  

http://home.mathematik.uni-freiburg.de/caycedo/
  
 
_____________________________________________________________________

Inhalt:
The sigma-algebra of Borel subsets of a complete separable metric space is isomorphic to that obtained from either the reals, the integers, or a finite set. The sigma-algebra of Borel subsets of the reals is known as the standard Borel space X. We say a Borel equivalence relation E on X is countable if every E-class is countable. All countable Borel equivalence relations are orbit equivalence relations arising from a countable discrete groups acting upon the standard Borel space, although expressing an arbitrary equivalence relation naturally may prove difficult.

A great many interesting mathematical problems are reducible to countable Borel equivalence relations. Borel reductions then provide a rich theory for comparing the relative difficulty of many classical problems in mathematics. For example, any countable Borel equivalence relation is reducible to the isomorphism problem for finitely generated groups.

Literatur:

  1. siehe http://home.mathematik.uni-freiburg.de/caycedo/
______________________________________________________________________________________________

Typisches Semester:  

6. Semester

Studienschwerpunkt:  

Mathematische Logik

Notwendige Vorkenntnisse:  

Modelltheorie

Sprechstunde Dozent:  

nach Vereinbarung, Eckerstr. 1

Sprechstunde Assistent:  

nach Vereinbarung, Zi. 304, Eckerstr. 1