Ort und Zeit
Vorlesung: Fr, 8-10 Uhr, HS II, Albertstr. 23b, Do, 12-14 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Klausur: Datum wird noch bekanntgegeben
Inhalt
Das Problem der Axiomatisierung der Wahrscheinlichkeitstheorie wurde 1933 von Kolmogorov gelöst: Eine Wahrscheinlichkeit ist ein Maß auf der Menge aller möglichen Versuchsausgänge eines zufälligen Experiments. Von diesem Ausgangspunkt entwickelt sich die gesamte moderne Wahrscheinlichkeitstheorie mit zahlreichen Bezügen zu aktuellen Anwendungen.
Die Vorlesung ist eine systematische Einführung dieses Gebietes auf maßtheoretischer Grundlage und beinhaltet unter anderem den zentralen Grenzwertsatz in der Version von Lindeberg-Feller, bedingte Erwartungen und reguläre Versionen, Martingale und Martingalkonvergenzsätze, das starke Gesetz der großen Zahlen und den Ergodensatz sowie die Brown'sche Bewegung.
Vorkenntnisse
notwendig: Analysis I+II, Lineare Algebra I, Stochastik I
nützlich: Analysis III