Klicken Sie auf den Veranstaltungstitel für weitere Informationen!
Functional Analysis
Dozent:in: Guofang Wang
Sprache: auf Englisch
Vorlesung: Mo, Mi, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Klausur: Datum wird noch bekanntgegeben
Achtung: Zeit- und Raumänderung!
Die lineare Funktionalanalysis, um die es in der Vorlesung geht, verwendet Konzepte der linearen Algebra wie Vektorraum, linearer Operator, Dualraum, Skalarprodukt, adjungierte Abbildung, Eigenwert, Spektrum, um Gleichungen in unendlichdimensionalen Funktionenräumen zu lösen, vor allem lineare Differentialgleichungen. Die algebraischen Begriffe müssen dazu durch topologische Konzepte wie Konvergenz, Vollständigkeit, Kompaktheit erweitert werden. Dieser Ansatz ist zu Beginn des 20. Jahrhunderts u. a. von Hilbert entwickelt worden, er gehört nun zum methodischen Fundament der Analysis, der Numerik, sowie der Mathematischen Physik, insbesondere der Quantenmechanik, und ist auch in anderen mathematischen Gebieten unverzichtbar.
Lineare Algebra I+II, Analysis I–III
Reine Mathematik
Angewandte Mathematik
Wahlmodul
Probability Theory
Dozent:in: Thorsten Schmidt
Sprache: auf Englisch
Vorlesung: Fr, 8-10 Uhr, HS II, Albertstr. 23b, Do, 12-14 Uhr, HS Weismann-Haus, Albertstr. 21a
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Klausur: Datum wird noch bekanntgegeben
Das Problem der Axiomatisierung der Wahrscheinlichkeitstheorie wurde 1933 von Kolmogorov gelöst: Eine Wahrscheinlichkeit ist ein Maß auf der Menge aller möglichen Versuchsausgänge eines zufälligen Experiments. Von diesem Ausgangspunkt entwickelt sich die gesamte moderne Wahrscheinlichkeitstheorie mit zahlreichen Bezügen zu aktuellen Anwendungen.
Die Vorlesung ist eine systematische Einführung dieses Gebietes auf maßtheoretischer Grundlage und beinhaltet unter anderem den zentralen Grenzwertsatz in der Version von Lindeberg-Feller, bedingte Erwartungen und reguläre Versionen, Martingale und Martingalkonvergenzsätze, das starke Gesetz der großen Zahlen und den Ergodensatz sowie die Brown'sche Bewegung.
notwendig: Analysis I+II, Lineare Algebra I, Stochastik I
nützlich: Analysis III
Angewandte Mathematik
Wahlmodul
Probability Theory III: Stochastic Analysis
Dozent:in: Angelika Rohde
Sprache: auf Englisch
Vorlesung: Di, Do, 12-14 Uhr, HS II, Albertstr. 23b
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
This lecture builds the foundation of one of the key areas of probability theory: stochastic analysis. We start with a rigorous construction of the It^o integral that integrates against a Brownian motion (or, more generally, a continuous local martingale). In this connection, we learn about It^o's celebrated formula, Girsanov’s theorem, representation theorems for continuous local martingales and about the exciting theory of local times. Then, we discuss the relation of Brownian motion and Dirichlet problems. In the final part of the lecture, we study stochastic differential equations, which provide a rich class of stochastic models that are of interest in many areas of applied probability theory, such as mathematical finance, physics or biology. We discuss the main existence and uniqueness results, the connection to the martingale problem of Stroock-Varadhan and the important Yamada-Watanabe theory.
Wahrscheinlichkeitstheorie I und II (Stochastische Prozesse)
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Algorithmic Aspects of Data Analytics and Machine Learning
Dozent:in: Sören Bartels
Sprache: auf Englisch
Vorlesung: Mo, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
The lecture addresses algorithmic aspects in the practical realization of mathematical methods in big data analytics and machine learning. The first part will be devoted to the development of recommendation systems, clustering methods and sparse recovery techniques. The architecture and approximation properties as well as the training of neural networks are the subject of the second part. Convergence results for accelerated gradient descent methods for nonsmooth problems will be analyzed in the third part of the course. The lecture is accompanied by weekly tutorials which will involve both, practical and theoretical exercises.
Numerik I, II oder Basics in Applied Mathematics
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Introduction to Theory and Numerics of Stochastic Differential Equations
Dozent:in: Diyora Salimova
Sprache: auf Englisch
Vorlesung: Mi, 12-14 Uhr, SR 226, Hermann-Herder-Str. 10
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Mathematical Physics II
Dozent:in: Chiara Saffirio
Sprache: auf Englisch
Vorlesung: Mo, 14-16 Uhr, SR 404, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Mathematical Time Series Analysis II
Dozent:in: Rainer Dahlhaus
Sprache: auf Englisch
Vorlesung: Do, 10-12 Uhr, SR 127, Ernst-Zermelo-Str. 1
Übung: 2-stündig, Termin wird noch festgelegt und in der Vorlesung bekanntgegeben
Die Anforderungen an Studien- und Prüfungsleistungen werden in den aktuellen Ergänzungen der Modulhandbücher beschrieben, die ab Ende Oktober 2025 als Teil des Kommentierten Vorlesungsverzeichnisses veröffentlicht werden.
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul
Numerical Optimization
Dozent:in: Moritz Diehl
Sprache: auf Englisch
Übung / flipped classroom: Di, 14-16 Uhr, HS II, Albertstr. 23b
Klausur: Datum wird noch bekanntgegeben
The aim of the course is to give an introduction into numerical methods for the solution of optimization problems in science and engineering. The focus is on continuous nonlinear optimization in finite dimensions, covering both convex and nonconvex problems. The course divided into four major parts:
The course is organized as inverted classroom based on lecture recordings and a lecture manuscript, with weekly alternating Q&A sessions and exercise sessions. The lecture is accompanied by intensive computer exercises offered in Python (6 ECTS) and an optional project (3 ECTS). The project consists in the formulation and implementation of a self-chosen optimization problem or numerical solution method, resulting in documented computer code, a project report, and a public presentation. Please check the website for further information.
notwendig: Analysis I–II, Lineare Algebra I–II
nützlich: Einführung in die Numerik
Angewandte Mathematik
Wahlmodul
Mathematik
Vertiefungsmodul